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Abstract— Autonomous systems rely on an increasing
number of input sensors of various modalities, and the
problem of sensor fusion has received attention for many
years. Autonomous system architectures are becoming
more complex with time, and the number and placement
of sensors will be modified regularly, sensors will fail
for many reasons, information will arrive asynchronously,
and the system will need to adjust to rapidly changing
environments. To address these issues we propose a new
paradigm for fusing information from multiple sources that
draws from the rich of field pertaining to financial markets,
particularly recent research on prediction market design.
Among the many benefits of this financialized approach
is that, both in theory and in practice, markets are well-
equipped to robustly synthesize information from diverse
sources in a decentralized fashion. Our framework poses
sensor processing algorithms as profit-seeking market
participants, data is incorporated via financial transac-
tions, and the joint estimation is represented as a price
equilibrium. We use pedestrian detection as a motivating
application. Pedestrian detection is a well studied field and
essential to autonomous driving. Real world fusion results
are presented on RGB and LIDAR data from the KITTI
Vision Benchmark Suite. We demonstrate we can achieve
comparable performance to state-of-the-art hand designed
fusion techniques using the proposed approach.

I. INTRODUCTION

Alongside the burst in development of autonomous
systems such as self-driving vehicles, intelligent sensor
networks, and personal robots we observe increasing
demand for new methods to obtain and synthesize data
from an agent’s environment. Modern platforms are
equipped with a wide range of sensors that gather
and report information on any number of aspects of
the system’s surroundings. These can include camera
sensors for collecting image-based data, acoustic sensors
like sonar, LIDAR for active range measurement and
radar for penetrative electromagnetic sensing. Typically
each of these sensors report data which will at various
times be critical to the autonomous system, and often the
system will heavily rely on synthesizing multiple sensor
streams simultaneously.

The problem of sensor fusion has received attention
for many years with now a sizable literature [1, 2, 3, 4].
Much of this work has utilized probabilistic modeling
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tools to aggregate data sources; Bayesian methods such
as Kalman filtering [5] have been particularly popular.
Such techniques have found broad utilization in modern
sensor fusion systems in that they have the ability to
handle various levels of noise across the array of sensors.

Probabilistic aggregation mechanisms require a huge
amount of human-led design and fine tuning, and this is
both a major benefit in terms of the capabilities of the
system yet also a significant weakness when it comes to
maintaining global flexibility and robustness. Carefully
designed models can excel under the right conditions,
but they are typically fragile to even small changes in
system design, and they need full retraining after only
slight modification to the input types.

To address these open problems in sensor fusion this
paper focuses on the development of a data synthesis
platform that will rely on tools from the design of
financial markets to perform efficient aggregation of
the various data streams. The approach we advocate
shall exploit the obvious benefits of prediction market
mechanisms to efficiently combine the information from
a range of different sources for the sake of prediction
and estimation.

Currently, the field has been dominated by Bayesian
methods. De Finetti’s classical perspective on probability
theory, that probabilities should only be interpreted as
prices offered for betting contracts [6], is particularly
salient. When we view a system with a diverse array
of sensor inputs, where each generates a stream of
probabilities/prices based on the available data, then a
very natural way to aggregate such prices is through
a market. Indeed, it has already been established that
several existing Machine Learning techniques can be
endowed with financial semantics [7], where various
estimation methods correspond to price equilibria under
particular agent/utility models.

While the market-oriented view of data fusion shares
many similarities with existing Bayesian methods, it has
many unique benefits that are quite well suited to the
needs of autonomous systems:

• Economic structures are inherently founded on the
principle of decentralization and diversely-held in-
formation. Whereas statistical methods can often be
implemented with a decentralized architecture, they
are not fundamentally designed as such.

• The success of market mechanisms in practice is
that they are incredibly robust without the need
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for strong restrictions or assumptions on the mar-
ket participants. Electoral prediction markets, for
example, exhibit impressive predictive power even
when most individual traders are uninformed.

• Typical market frameworks are designed with asyn-
chrony in mind, hence prices will respond to new
information when it becomes available. This is
crucial when we realize that sensors differ in the
frequency of measurement as well as lags due to
computational and other time costs.

• Markets tend to have the long-term benefit of
separating good information from bad; market par-
ticipants with truly novel and useful information are
given rewards in order that their future “bets” will
generate a large effect on the market prediction.

II. PRIOR WORK

The field of data fusion has been the source of
extensive research and the broad coverage of topics is
beyond the scope of this paper. Bar-Shalom et. al present
a comprehensive review of recent techniques in [8, 9].
Most relevant to the proposed market approach is the
sub field of Decentralized Data Fusion (DDF), including
the work of Sukkarieh et. al where DDF was applied to
tracking ground targets from four Unmanned Aerial Ve-
hicles [10]. There we see the use of individual robots as
independent agents exhibiting a decentralized solution.
Additionally, the Decentralized Bayesian approach of
Makarenko and Durrant-Whyte [4] addressing the DDF
problem with a formal probabilistic framework allowing
for the Bayesian integration of multiple decentralized
sensors this time within a sensor network context. In
a generalization of the Bayesian approach Dempster-
Shafer evidence theory has formed the basis for several
approaches that attempt to fuse sensor data in a princi-
pled manner [11, 12]. Such approaches have utilized the
concept of distributed support for a proposition. Newer
work by Lanillos et al. [13] has moved beyond strictly
hand designed fusion architectures for the DDF problem
but must share larger amount of data between agents to
perform fusion.

Financialized methods within robotics have appeared
in coordination and task allocation in multi-agent sys-
tems. Early work by Wellman and Wurman [14] showed
the promise of market aware agents in a robotics context.
They explore the concept of using market forces to
govern intra-team robot coordination in non-competitive
environments. This was validated in simulation and later
applied to physically embodied robotic systems by Zlot
and Stenz [15, 16]. A greater degree of formalization to
market-based task allocation was provided by Liu and
Shell who expanded previous approaches with bounds
on complexity [17]. Such market-based techniques were
very well suited to task allocation. Job bidding and

allocation has very natural parallels to typical economic
principles in market creation.

This paper addresses the problem of integrating mul-
tiple sensors using information markets a topic that has
received less attention as it requires a higher degree of
abstraction to make parallels to the real world economy.
It is important to note that this paper is not the first
to put forth a market-like framework for sensor data
aggregation; Jumadinova and Dasgupta [18, 19, 20] have
done some preliminary work looking at how a prediction
market can be used to fuse a metal detector, a ground
penetrating radar and an infra-red camera for a land
mind detection system. Their work, while interesting and
enlightening, has only scratched the surface on avenues
of exploration, and has not taken advantage of the wealth
of research that has emerged in the last 5-10 years
within the EconCS community for developing prediction
market mechanisms.

III. MARKET-BASED SENSOR FUSION

The data fusion problem is critical to real-time field
robotic systems. The ability to robustly fuse data from
multiple sources has been a major driver in the advances
in autonomous systems over the last twenty years [21].
The benefits of data fusion apply to many core functions
robots undertake frequently. Sensor fusion offers the
possibility of improved range and resolution, measure-
ment across a diverse set of sensor modalities, mitigation
of imprecision and uncertainty, and improved resolution.

A. The Fusion Market System Architecture

A diagram of the architecture of the system is shown
in Figure 1. Let us now describe the ingredients of the
proposed Sensor Fusion Market Mechanism, and how
each piece will interact in the following section:

1) The Sensors. Each sensor will produce a stream
of raw data that can be observed by one or several
agent models. The sensor data need not be reliable
at all times, and the sensors may have different
processing lags etc.

2) A Class of Predictive Models. Agents in our
system will synthesize sensor data according to
a predictive model that has been trained using
historical data. A model receives a stream of data
and generates a sequence of predictions. An initial
prototype for the proposed system is discussed in
§V.

3) An abstract currency. The way in which algo-
rithms will interact with each other is through
the use of a kind of “pseudo-currency” that can
be used to purchase predictive contracts. Contract
rewards will pay out in this currency, and the
agents in our system will aim to maximize their
long-term profit accordingly.
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Fig. 1. An overview of the multi-sensor fusion market.

4) A Set of Contingent Securities (Contracts). The
fusion market will facilitate the trade of abstract
prediction contracts characterized as follows:

a) A verifiable event or quantity corresponding
to a real or discrete variable associated with
a future uncertain state of the environment,
such as “there will be an object at position
X,Y at time T” and “there is a human stand-
ing within a 20 foot range of the vehicle”;

b) A payout function that determines the re-
ward, in the market’s pseudo-currency, paid
to the purchaser of this contract under the
range of possible future outcome states;

c) An expiration time specifying a time by
which the contract will settle;

d) A price, set according to the market, for
investing in this security.

5) The Agents. Each agent is characterized by the
following attributes:

a) A sensor input that is the unique source of
data input;

b) a predictive model used to internally generate
predictions;

c) available capital that was obtained via trad-
ing, and can be used to make future specu-
lative investments;

d) a set of invested securities, contracts that
have been purchased (or sold) that will de-
termine future possible payouts to the agent.

At a high level, each agent is endowed with
the objective to maximize profit over the long

term by trading in the fusion market utilizing the
(potentially private) information available to it via
its specific sensor. At a given point in time the
agent will observe sensor data and generate one
or several predictions, each corresponding to a
prediction contract made available by the market
making authority. Thus the agent must query the
menu of available securities sold by the market, as
well as the posted price of each, and the agent will
determine which contracts provide a suitable profit
expectation. Of course, the agent must also reason
about its available capital and existing investments
(financial exposure) to decide what investments to
make or whether to abstain from trading.

6) The Market Authority. Sitting at the center of
the set of agents is the market authority, which
we shall call a Market Maker (MM). The MM
advertises the set of currently-available securities
for purchase, and the MM exposes a trading API
available to the agents for making purchases (or
sales) of such contracts, including both a price-
query method as well as a purchase/sale method.
The MM’s primary job is to adjust prices accord-
ing to executed trade’s, as these prices shall reflect
the aggregate estimate of the agents.

IV. MARKET-DRIVEN SENSOR FUSION FRAMEWORK

A. Prediction Markets

Information or prediction markets, which play a fun-
damental role in economics and finance, are used as a
central tool in the present work. Prediction markets allow
individuals to bet on the outcome of future events, either
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for the sake of speculation (World Cup gambling) or to
hedge risk (farmers buying commodity futures). Many
information markets already exist and are available to
the public; at sites like Betfair.com, individuals can
bet on everything ranging from election outcomes to
geopolitical events. There has been a recent burst of
interest in such markets, not least of which is due to
their potential for combining disparate information from
many sources. In the words of Hanson et al. [22]: “Ra-
tional expectations theory predicts that, in equilibrium,
asset prices will reflect all of the information held by
market participants. This theorized information aggrega-
tion property of prices has lead economists to become
increasingly interested in using securities markets to pre-
dict future events.” In practice, prediction markets have
proven impressively accurate as a forecasting tool [23,
24].

Our goal in the present section is to give a broad
overview of the mathematical framework for designing
prediction market mechanism. In particular we want to
describe some of existing literature which is the basis
for the design of the centralized market-making authority
described in §V.

1) Proper Scoring Rules, to the Design of Prediction
Markets: In its simplest incarnation, a proper scoring
rule [25] is a two input function S(P̂ ;x), where P̂ is a
forecast x an “outcome”, that must satisfy the following:
for distribution P , if x is sampled from P , then for any
P̂ we must have Ex∼P [S(P, x)] ≥ Ex∼P [S(P̂ , x)]. That
is, the expected value of S is maximized by reporting the
true distribution P . A popular example is the logarithmic
scoring rule defined by S(P, x) := logP (x), and it is
an easy exercise to see that this satisfies the desired
property. The literature has grown significantly [26, 27]
since the work of Savage [25]; see [28] for useful survey.

When x arrives from a large (or infinite) space, we
may not need the full distribution P over x but rather
some statistic of P , say EP [φ(x)], where φ is some
function of interest taking values in Rd. A proper scoring
rule for φ is a function S : Rd × X → R satisfying
the natural property: Ex∼P [S(µ, x)] ≥ Ex∼P [S(µ̂, x)],
where µ = Ex∼P [φ(x)] and for any µ̂. It turns out that,
given any smooth convex function R on Rd, we can
construct a proper scoring rule via the Bregman diver-
gence as follows: S(µ̂, x) = DR(φ(x), µ̂). Abernethy
and Frongillo [29] established that every proper scoring
rule can be cast in this form, up to additive terms.

Hanson [30] developed the beautiful insight that one
can use a scoring rule not only to elicit correct forecasts
from a single individual but also to design a prediction
market. In such a market, traders would have the ability
to place bets with a central authority, known as a market

maker1(MM). The betting framework proceeds as fol-
lows: The market maker publishes a proper scoring rule
S and an initial probability estimate P0. On each round
t the current consensus probability Pt is posted and any
trader can place a bet by modifying the probability to
a desired value Pt+1. In the end, the true outcome x is
publicly revealed, and each trader receives a (potentially
negative) profit of S(Pt+1, x)− S(Pt, x).

Notice two facts about this framework: (a) if a trader
at time t knows the true probability P ∗ then he always
maximizes expected profit by setting Pt+1 = P ∗ and
(b) because of the telescoping sum, if PT is the final
estimated probability then the market maker needs only
to pay out a total of S(P0, x) − S(PT , x). Hanson
referred to this form of prediction market as a Market
Scoring Rule (MSR), known as the Logarithmic Market
Scoring Rule (LMSR) under the log score.

Hanson’s prediction market framework, which re-
quires traders to make probability estimates and judges
them according to a scoring rule, does not fit into our
typical understanding of betting markets, as well as
other financial markets, in which parties buy and sell
“shares.” We can think of a share as an Arrow-Debreu
security which would involve a payoff of $1 in the
even that a particular state of the world is reached,
and $0 otherwise [31]; these are often called contingent
securities. A very nice observation, initially discoverd
by [32], shows that the market scoring rule idea of
Hanson can be converted into an alternative betting
language, where traders simply purchase bundles of
Arrow-Debreu securities at prices set by the market
maker. The corresponding mechanism involves a market
formulation based on a “cost function”, which we sketch
here:

• Before outcome i ∈ [n] is realized, MM shall sell
Arrow-Debreu securities (shares) for all i. MM has
a smooth convex C : Rn → R and maintains a
“quantity vector” q ∈ Rn, initialized to 0.

• Traders may purchase share “bundles” r ∈ Rn≥0

(ri is quantity of security i). Given current q, the
price for r is C(q+r)−C(q). After selling r, MM
updates q← q+ r.

• At the close of the market, when the outcome i is
revealed, the market maker has to make a payout
to all winning contracts, which is a total cost of qi.

The derivative ∇C(q) is essentially the market estimate
of the true distribution on the outcome, since ∇iC(q) is
the marginal cost of a tiny purchase of contract i, which
in equilibrium should be the expected return of the con-
tract; that is, the probability. Indeed, to avoid arbitrage

1The term market maker is used generally to describe an agent or
firm that is willing to facilitate the market by offering to transact with
interested traders. Here, the market maker is also the central authority
that manages the market as well.
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opportunities the market maker must ensure that ∇C(q)
is always a distribution. Chen and Pennock [32] showed
that the LMSR is implementable via this cost-function
framework, with C(q) := α−1 log (

∑
i exp(αqi)).

B. Sensor model and processing

As this paper is not focused on the direct creation
of new classification techniques but rather a framework
for the effective synthesis of multiple techniques, we
draw from the state-of-the-art in object classification
literature for autonomous driving applications. Further
constraining the exploration of this problem we have
chosen a well researched area in this field: pedestrian
detection [33, 34]. It was desirable to choose a very
important yet constrained problem to deeply explore the
fusion of multiple algorithms sensors’ hypotheses about
the semantic label and physical position of a target like
a pedestrian.

In the proposed framework a classification algorithm
is wrapped in a trading agent. While the approach is
agnostic to the underlying classification algorithm here
we describe the state-of-the-art approach used in this
paper. Using the multisensor approach of Premebida
et al. [35] LIDAR and image data is processed to
extract high-level features for classification. The image
data is run through a histograms of gradients (HOG)
feature extractor [36]. This produces a fairly illumination
invariant representation that has been quite popular for
object detection. HOG splits an image into a set of
patches on a regular grid and then creates a binning of
gradient orientations within those patches. These patches
are then aggregated in coarser overlapping grids and
normalized. These patches are then concatenated into a
single feature vector representing the contained region.
Given an object of interest (e.g. a human pedestrian)
a template is learned discriminatively using a linear
support vector machine [37]. This template can then be
run against an image to detect occurrences of that object.

To address issues around occlusion and improve the
detection of articulated object like pedestrians, Felzen-
szwalb et al. [38] proposed a deformable parts model.
This addresses shortcomings in detecting non-rigid ob-
jects with HOG. The algorithm does this by clustering
positive examples to generalize template learning for an
object. It creates a star model to relate object parts and
learn filters for each part individually. Finally, the algo-
rithm uses multiple instance learning to refine bounding
box detection.

To complement the image based approach Premebida
et al. [35] propose the use of HOG on up-sampled depth
maps created using a Velodyne HDL-64E LIDAR. We
employ the Premebida et al. [35] technique to perform
some preprocessing to allow HOG to be run on the depth
image and produce similar results to the complementary

RGB image data.

V. EXPERIMENTAL SETUP AND MARKET
IMPLEMENTATION

Our experimental setup and implementation of the
prediction market mechanisms is as follows:

1) Image Data. The KITTI dataset [39] images were
all resized to the same dimensions. For each
image, and for the RGB sensor as well as the
LIDAR, we have a set of bounding boxes for
predicted pedestrian locations within the image.
You can see an example image in Figure 2.

2) Sliding Windows. We divided each image into a
set of regions where we generated a binary label
corresponding to “is there a pedestrian in this
window?”. This is computed by calculating if at
least 50% of a pedestrian (predicted or ground
truth) bounding box is contained within the win-
dow. These sliding windows span the entire height
of the image and are shifted 50% of their width
creating 50% overlap between each window.

3) Trading Agents. For each sensor type s, and for
each set of parameter values θ used to interpret
the sensor’s readings, we have a trading agent Ts,θ
who will execute trades based on the inputs from
this sensor and the parameters θ. For this particular
experimental setup, the only parameter we consid-
ered was the sensitivity to the size of overlap of
the bounding box of a predicted pedestrian in the
window, and considered 10 parameters uniformly
from 0% to 100%. Each agent was also afforded
an amount of initial capital to make trades, and an
agent’s existing capital affects the size of the bets
s/he can make.

4) Binary contracts. For each image i and window
j the traders can purchase a “contract” Ci,j that
give a payout of $1 in the event that a pedestrian is
detected in this window in the image. The contract
prices are set by market demand and are managed
by the market maker. The payouts are made after
the true labels are revealed, which in our setup
occurs directly after the market closes and before
the traders proceed to the next image.

5) Market Maker. For each image i there is a market
maker (MM) who facilitates trading among the
set of traders, and the MM offers Ci,j for each
window j. In order to price Ci,j , the MM also
maintains the total outstanding shares of Ci,j . The
MM sets prices according to the cost function
described in §IV-A.1: if the market maker has
sold q shares on a particular contract, and a trader
wants to purchase r additional shares, the cost is
1
α log

(
1+exp(α(q+r)
1+exp(αq)

)
; we set α = 1.0. This is the

LMSR described previously.
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Fig. 2. An example image in the KITTI dataset [39], with predicted detections by LIDAR (“Las”) and camera (“Cam”) relative to ground
truth (“GT”). Active windows are shown as well.

6) Trading Process. For each image, corresponding to
a single market, we facilitated trading among the
set of trading agents as follows. For each of a set
of rounds (numbering 1000), we sample an agent
at random, compute the current market prices for
the set of available contracts, pass these prices to
the agent, and the agent determines a bet size for
each contract. If the agent’s internal belief is p
on this contract, corresponding to the probability
of a pedestrian in image i window j, and the
market price is p̂, then the agent’s purchase size is
proportional to max(0, p − p̂), where the amount
also scales with the agent’s remaining budget as
well as a betting-fraction parameter which we set
to 0.1.

7) Market predictions. At the end of the trading
process, when the market prices have settled,
we can query the market for the various prices
on the set of available securities. As we have
already mentioned, these market prices correspond
in some sense to the aggregate belief of all traders.
We use these prices as “likelihood scores” when
comparing to the other methods (in §VI).

VI. RESULTS

We performed a set of experimental results aimed at
demonstrating the feasibility of the proposed prediction
market framework. We implemented a market infrastruc-
ture to aggregate sensor data on a particular detection
task involving recognizing pedestrians. Our results show
that when we use the market prices as an aggregation
mechanism for our sensor data we obtain predictions that
are at least competitive with existing methods. Figure 3
shows that the market predictions are superior for at least
some precision/recall tradeoffs.

A. Evaluation Metric

The pedestrian detection performance is evaluated by
assessing the number of true positives (TP ) and false

positives (FP ) using VOC-PASCAL metric [40] of 50%
overlap criteria:

score =
area(Bu ∩Bv)
area(Bu ∪Bv)

, (1)

where Bu∩Bv denotes the intersection of two bounding
boxes and Bu ∪ Bv their union. (Note: in this case
we calculate the bounding boxes as clamped to sliding
windows as described in §V.)

B. Training and Testing

To perform a fair evaluation comparing our results
to Premebida et al. [35] we use the exact same valida-
tion set which consists of 3741 frames, of the KITTI
dataset [39] starting from frame 003739 and ending at
007480. The market agents are “trained" on the first
3738 images where they make bets on the presence or
absence of a pedestrian in each of the sliding windows
in a image. This “training" process allocates the capital
in the market to the agents (the varied modalities and
parameter settings). Then once the training rounds of
betting are complete the agents are shown the new
data, one image at a time (images 003739–007480),
and asked to bet on the presence or absence of a
pedestrian in a single sub-window. The resulting market
price for a security after 1000 betting rounds (see
§V.6) can be expressed between 0.0 − 1.0 and taken
as a binary classifier confidence output for the current
sliding window. These results are then compared to three
existing methods which also output binary classifications
on a 0.0 − 1.0 scale with ground truth evaluated using
the bounding box overlap method described in §VI-A.
The comparison approaches are the RGB-only, LIDAR,
and SVM-fused results in [35]. Each of these methods
and the proposed approaches are shown in Figure 3 as
Receiver operating characteristic curves.

VII. CONCLUSIONS AND FUTURE WORK

This paper seeks to address one of the most significant
problems in robotic perception, our ability to integrate
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Fig. 3. Receiver operating characteristic curves for the proposed
approach and a state-of-the-art SVM-based fusion technique [35]. Note
that we are able to achieve similar performance without the need for
an elaborately hand-tuned system. The simplicity of the market-based
technique is a strong motivator for its adoption.

information from multiple sensing modalities and make
decision is the face of sensor noise and failure. We
demonstrate a proof-of-concept on a real-world robotics
problems. We show it is possible to achieve comparable
performance to state-of-the-art hand designed fusion
techniques using the proposed approach.

While improvements in sensor quality matched with
reduced costs have pushed new frontiers for autonomous
systems. Higher-resolution cameras, LIDARs, Flash LI-
DARs, automotive radars, commodity structured light
sensors and so on have all enabled new fields of robotic
research. The complement of a new alternative fusion
paradigm has great potential to enable advances in
perception and classification research.

In future work we hope to broaden the set of tech-
niques here in a number of directions. For example,
our market mechanisms were designed to estimate a set
of binary outcome probabilities, but a richer approach
would provide a full density estimate on the existence
of objects (pedestrians) in 3D space.
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