5.1 Review: Hoeffding’s inequality (simplified)

If \(x_1, \ldots, x_n \in [0, 1] \) are independent random variables, then Hoeffding’s inequality states that

\[
\Pr \left(\frac{1}{n} \sum_{i=1}^{n} x_i - E \left(\frac{1}{n} \sum_{i=1}^{n} x_i \right) \geq t \right) \leq \exp(-2t^2n)
\]

The left hand side dies off extremely quickly as \(t \) increases. Note that if we want to get a bound in terms of the absolute value of the deviation then we get a probability bound that increases by 2. We can also solve for \(t \) in terms of a given probability \(\delta \):

\[
\delta \geq 2 \exp(-2t^2n) \\
\mapsto \log \left(\frac{2}{\delta} \right) \leq 2t^2 n \\
\mapsto t \geq \sqrt{\frac{\log(2/\delta)}{2n}}
\]

Fact 5.1. With probability \(1 - \delta \) we have

\[
\left\| \frac{1}{n} \sum_{i} x_i - E \left(\frac{1}{n} \sum_{i} x_i \right) \right\| \leq \sqrt{\frac{\log(2/\delta)}{2n}}
\]

5.2 One more deviation bound

We want to ensure by taking enough random samples that some event doesn’t occur “often”, that is with probability less than \(\epsilon \). Formally, let \(x_i \in \{0, 1\} \) with \(\Pr(x_i = 1) \geq \epsilon \). What is the probability that \(\sum_{i=1}^{n} x_i = 0 \)? We know that

\[
\prod_{i=1}^{n} (\Pr(x_i = 0)) \leq (1 - \epsilon)^n = \exp(n \log(1 - \epsilon))
\]

Since log is a concave function, \(\log(1 + x) \leq x \) for any \(x \in \mathbb{R} \). So \(\exp(n \log(1 - \epsilon)) \leq e^{-nx} \).

Fact 5.2. If \(n \geq \frac{\log(1/\delta)}{x} \) then with probability \(1 - \delta \), \(\sum_{i=1}^{n} x_i \neq 0 \).

Note that since \(x^2 < x \) for small, positive values of \(x \), this is a tighter lower bound on \(n \) than the one given by Hoeffding’s inequality for small \(\epsilon \).
5.3 Sketch of a typical machine learning problem and support vector machines

In a linear classification problem, we are given data \((x_1, y_1), \ldots, (x_n, y_n)\) independently and identically from a distribution \(D\). Here \(x_i \in \mathbb{R}^d\) and \(y_i \in \{-1, 1\}\). We want to find \(w \in \mathbb{R}^d\), a weight coefficient vector such that \(\Pr(\text{sgn}(w^T x) \neq y)\) is small for all future \((x, y) \sim D\). One way to find \(w\) is by solving the following maximization problem:

\[
\arg\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^{n} \max(0, 1 - y_i (w^T x_i)) + \lambda \|w\|^2
\]

where \(\lambda \in \mathbb{R}\) is a chosen parameter. The function within the arg min term is the support vector machine’s loss function, called the hinge loss.

Definition 5.3 (Training Error). The training error, written as \(\text{err}_n(w)\), is

\[
\frac{1}{n} \sum_{i=1}^{n} \mathbb{1}[\text{sgn}(w^T x_i) \neq y_i]
\]

The hinge loss function is an approximation of the training error. Using the hinge loss function or otherwise, pick some \(w \in \mathbb{R}^d\) such that \(\text{err}_n(w) \leq \epsilon\). How do we know that the model is “good”? First, a definition:

Definition 5.4 (Ideal Test Error). The test error, written as \(\text{err}(w)\), is

\[
\mathbb{E}(\mathbb{1}[\text{sgn}(w^T x) \neq y]) = \Pr((w^T x)y \leq 0)
\]

where the expectation and probability are taken over distribution \(D\), \((x, y) \sim D\).

A good model has small ideal test error. An erroneous approach is as follows. Pick \(\hat{w}_n = \arg\min_{w \in \mathbb{R}^d} \mathbb{1}[(w^T x_i)y_i \leq 0]\).

Apply Hoeffding’s inequality:

\[
I_i = \mathbb{1}[(w^T x_i)y \leq 0]
\]

\[
|\text{err}_n(w) - \text{err}(w)| = \frac{1}{n} \sum_{i=1}^{n} I_i - \mathbb{E}(I) \leq \sqrt{\frac{\log(2/\delta)}{2n}}
\]

with probability \(1 - \delta\). This argument is false because \(I_i\) are intentionally correlated to fit the data. They are no longer independent.

5.4 PAC-Learning: “Probably Approximately Correct”

Key pieces:

- \(X\) input space
- Output space \(Y = \{0, 1\}\)
- Concept class \(C\), a set of function families taking \(X\) to \(Y\).

Here \(C\) can be viewed as part of \(P(X)\), the power set of \(X\).

Definition 5.5. A learning instance consists of:

- A distribution \(D \in \Delta(X)\).
• A target concept $c \in \mathbb{C}$.

Our goal is to have an algorithm A that maps a collection of learning instances to a hypothesis $h : X \to Y$, hopefully with $\Pr_{x \sim D}(h(x) \neq c(x)) \leq \epsilon$.

Definition 5.6 (Risk). Given $D \in \Delta(X)$ and target $c \in \mathbb{C}$, the risk of h, a function from X to Y, is

$$R(h) = \mathbb{E}[\mathbb{1}(h(x) \neq c(x))] = \Pr_{x \sim D}(h(x) \neq c(x))$$

where R depends on D and c. This is also known as the generalization error.

Definition 5.7 (Empirical Risk). The empirical risk on x_1, \ldots, x_n is defined as

$$\hat{R}(h) = \frac{1}{n} \sum_{i=1}^{n} \mathbb{1}[h(x_i) \neq c(x_i)]$$