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Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

23.1 Online convex optimization: generalization of several algo-
rithms

Many of the algorithms that we studied in this course are special cases of online convex optimization. We
recall a few algorithms studied so far. Later on we will argue how they form a special case of online convex
optimization.

Expert Setting

1 for t← 1 to T do
2 Algorithm chooses wt ∈ ∆n;
3 Nature chooses loss `t ∈ [0, 1]n;

4 end

Algorithm 23.1: Expert setting

Linear Perceptron

1 for t← 1 to T do
2 Algorithm chooses wt ∈ Rn;
3 Nature chooses (xt, yt) ∈ Rn × {−1, 1};
4 Algorithm experiences loss `t = 1[(wtxt)yt < 0] = max(0,−yt(wtxt));

5 end

Algorithm 23.2: Linear Perceptron

Online linear regression

1 for t← 1 to T do
2 Algorithm chooses wt ∈ Rn;
3 Nature chooses xt ∈ Rn and yt ∈ R ;
4 Algorithm experiences loss `t = (wtxt − yt)2;

5 end

Algorithm 23.3: Online linear regression

23-1



Lecture 23: Online convex optimization 23-2

Portfolio selection

1 for t← 1 to T do
2 Algorithm chooses wt ∈ ∆n;
3 Nature chooses price Pricet(i) for all i;

4 Algorithm experiences gain gt = wtxt where xt(i) = Pricet(i)
Pricet−1(i)

;

5 end

Algorithm 23.4: Portfolio selection

23.2 Online convex optimization

Now we introduce the generalized form of convex optimization that generalizes the above given examples.

Given: A convex compact decision set: X ⊂ Rn
A class of loss functions: L = {l : l : X → R, l is convex and Lipshitz continuous }

1 for t← 1 to T do
2 Algorithm chooses wt ∈ X;
3 Nature chooses lt ∈ L;
4 Algorithm experiences loss lt(wt);
5 Algorithm updates wt+1 ;

6 end

Algorithm 23.5: Generalized pattern of online convex optimization

Our goal is to design a rule—Alg. 23.5 step 5—that minimizes regret

RegretT (Alg) :=

T∑
t=1

lt(wt)− min
w∗∈X

T∑
t=1

lt(w
∗) . (23.1)

All problems listed above are the same convex optimization. [1] proposed online gradient descent (OGD)
with the regret bound

RegretT (OGD) ≤ DG
√
T ,

where D is the L2 diameter of convex compact set X and G is the L2 Lipschitz bound on L.

23.3 Online gradient descent

Initialize: wt is the center of the set X. Let η be a parameter.
1 for t← 1 to T do
2 Algorithm chooses wt ∈ X;
3 Nature chooses lt ∈ L;
4 Algorithm experiences loss lt(wt);
5 w̃t+1 ← wt − η∇lt(wt) ;
6 wt+1 ← ProjectionX(w̃t+1) := arg infw∈X ‖w − w̃t+1‖2;

7 end

Algorithm 23.6: Generalized pattern of online convex optimization

Theorem 23.1. Regret—defined in (23.1)—for Algorithm 23.6 has an upper bound of DG
√
T .

Proof:
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Define potential function φt = − 1
2η‖w

∗ −wt‖22. The change in potential at every iteration is given by

φt+1 − φt = − 1

2η
(‖w∗ −wt+1‖22 −

1

2η
‖w∗ −wt‖22) (23.2)

= − 1

2η
(‖w∗ − ProjectionX(wt − η∇lt(wt))‖22 − ‖w∗ −wt‖22) (23.3)

≥ − 1

2η
(‖w∗ −wt + η∇lt(wt)‖22 − ‖w∗ −wt‖22) (23.4)

= − 1

2η
(η2‖∇lt(wt)‖22 − 2η∇lt(w∗ −wt)) (23.5)

= −∇lt(wt)(w
∗ −wt)−

η

2
‖∇lt(wt)‖22 (23.6)

≥ −(lt(w
∗)− lt(wt))−

η

2
‖∇lt(wt)‖22 (23.7)

≥ lt(wt)− lt(w∗)−
η

2
G2 . (23.8)

Here (23.4) is due to the fact that projection of point is to X always closer to any point inside X. And (23.7)
is due to convexity of lt ∈ L because for any convex function f , ∇f(x)(y − x) ≤ f(y) − f(x) . Equation
(23.8) is because of G-Lipschitz continuity of lt ∈ L.

Summing both sides of (23.8) from t = 1 to t = T , we get

RegretT (OGD) =

T∑
t=1

lt(wt)− lt(w∗) ≤
T∑
t=1

(
φt+1 − φt +

η

2
G2
)

(23.9)

= φT+1 − φ1 +
η

2
TG2 (23.10)

≤ −φ1 +
η

2
TG2 =

1

2η
‖w∗ −w1‖22 +

η

2
TG2 (23.11)

≤ 1

2η
D2 +

η

2
TG2 . (23.12)

Equation (23.12) is because D is the diameter of the convex set X. Since (23.12) is true for every η, we chose
η = D

G
√
T

to get

RegretT (OGD) ≤ DG
√
T . (23.13)

�
Note that Perceptron is OGD with lt(wt) = max(0,−yt(w>t xt) and gradient given by

∇lt(wt) =

{
0 if yt(w

>
t xt) > 0

−ytxt otherwise
(23.14)

23.4 Further Generalization

A more generic algorithm is a modification of Follow the Regularized Leader (FTRL). In FTRL the update
step is

wt+1 = arg min
w∈X

t∑
s=1

ls(w) +
1

η
R(w) , (23.15)
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where R(w) is the regulariser. Define a new algorithm FTRL’with the update step

wt+1 = arg min
w∈X

t∑
s=1

∇ls(w) +
1

η
R(w) . (23.16)

Note that OGD is a special case of FTRL’with R(w) = 1
2‖w‖

2
2. Similarly Exponential Weights Algorithm

(EWA) is also a FTRL’with R(w) =
∑k
i=1 wi log(wi). The above observations are very recent. Only recently

since 2008, we got to understand about the equivalence of OGD, EWA and FTRL’. The upper bound on
regret of FTRL’is given by

RegretT (FTRL) ≤ R(w∗)−R(wt)

η
+

T∑
t=1

DR(wt,wt+1) , (23.17)

where DR(wt,wt+1) is the Bragman Divergence. For more details please refer to the surveys on the course
website.

23.5 Online to Batch Conversion

Standard stochastic setting. Assume that we have unknown distribution D on X × Y . Let (xt, yt) ∼ D for
all t = {1, . . . , T}. Use only online learning algorithm on this sequence

input : (xt, yt) ∼ D for all t = {1, . . . , T}.
Batch output: w̄T = 1

T

∑T
t=1 wt

1 for t← 1 to T do
2 Algorithm chooses wt ∈ X;
3 Algorithm observes (xt, yt);
4 Algorithm experiences loss given by convex loss function l(wt|xt, yt);
5 wt+1 ← ProjectionX(wt − η∇l(wt|xt, yt)) ;

6 end

Algorithm 23.7: Online to batch conversion

Note that we are choosing the average weight w̄T rather than the last weight wT . This differences arises
because of a different objective function than regret. For batch problem we want to minimize the risk,

Risk(w) := E
(x,y)∼D

l(w|x, y) (23.18)

Theorem 23.2. The output of Online to Batch Conversion enjoys:

Risk(w̄T )− Risk(w∗) ≤ E
[

RegretT (Alg)

T

]
Proof: From the definition of risk of averaged weights we get,
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Risk(w̄T ) = E
(x,y)∼D

l(w̄T |x, y) = E
(x,y)∼D

l

(
1

T

T∑
t=1

wt | x, y

)
(23.19)

≤ 1

T

T∑
t=1

E
(x,y)∼D

l(wt|x, y) (23.20)

=
1

T

T∑
t=1

E
(xt,yt)∼D

l(wt|xt, yt) = E
(xt,yt)∼D

 1

T

T∑
t=1

l(wt|xt, yt)︸ ︷︷ ︸
lt(wt)

 (23.21)

≤ E
(xt,yt)∼D

[
1

T

T∑
t=1

l(w∗|xt, yt) +
Regrett(Alg)

T

]
(23.22)

= Risk(w∗) + E
[

RegretT (Alg)

T

]
. (23.23)

Here Eq. (23.20) is due to convexity of the loss function with respect to w. Note that random variables
(x, y) ∼ D are replaced with identically distributed (xt, yt) ∼ D in (23.21). Equation (23.22) uses definition
of RegretT (Alg) as given by (23.1).

�
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