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18.1 Review: On-line Learning with Experts (Actions)

Setting Given n experts (actions), the general on-line setting involves T rounds. For round ¢t = 1...T"
e The algorithm plays with the distribution p? = ﬁ cA,.
e The i-th expert (action) suffers the loss ¢! € [0, 1].
e The algorithm suffers the loss p* - £".

Theorem 18.1 (Regret Bound for EWA).
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Note The distribution p = e; means the algorithm puts all mass on the i-th action.

18.2 Two Player Game

nxm

Definition 18.2 (Two Player Game). A two player game is defined by a pair of matrices M, N € [0,1]

Definition 18.3 (Pure Strategy). With a pure strategy in a two player game, P1 chooses an action i € [n],
and P2 chooses an action j € [m]. P1 thus earns M;;, and P2 earns N;;.

Definition 18.4 (Mixed Strategy). With a mixzed strategy in a two player game, P1 plays with a distri-
bution p € A, and P2 plays with a distribution q € A,,. P1 thus earns p' Mq = > pigiM;;, and P2 earns

2]
P’ Na = Y pig;Nij.
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Definition 18.5 (Zero-sum Game). A zero-sum game is a two player game, where the matrices M, N
has the relation M = —N.

18.3 Nash’s Theorem
Definition 18.6 (Nash Equilibrium). In a two player game, a Nash Equilibrium(Neq), in which P1
plays with the distribution p € A, and P2 plays with the distribution q € A,,, satisfies

o forallpc A, p'Mq>p'Mq

o forallq€ A,,, p'Nq>p' Nq

Theorem 18.7 (Nash’s Theorem). Every two player game has a Nash Equilibrium(Neg). (Not all have pure
strategy equilibria.)

Lemma 18.8 (Brouwer’s Fixed-point Theorem). Let B C R be a compact convexr set, and a function
f: B — B is continuous. Then there exists x € B, such that x = f(x).
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Proof Sketch of Nash’s Theorem
1. Let ¢;(p,q) = max (O,eiTMq — pTMq)7 and d;(p,q) = max (O, q' Me; — pTMq).

itci(p, i+di (P,
2. Define a map f: (p,q) — Qﬂ,qﬁ,p;::i;gsf%g%%&ﬁ,and.% = Tiijf%f%%}ﬁ-
i’e[n] i’ €[m]

3. By Brouwer’s fixed-point theorem, there exists a fixed-point (p,q), f(p,q) = (P, q)-

4. Show the fixed-point (p,q) is the Nash Equilibrium.

18.4 Von Neumann’s Minimax Theorem
Theorem 18.9 (Von Neumann’s Minimax Theorem).

min max p' Mq= max min p' Mq
PEA, €A, €A, PEA,

Proof by Nash’s Theorem

e Exercise

Proof by the Exponential Weighted Average Algorithm

a) The ”7>” direction is straightforward. Let p1 € A,, q1 € A,, be the choices for mgl max p' Mq =
PEA,QEA,

p; Mqy, and ps € A,,, g2 € A, be the choices for max miAn p'Mq=p, Mqs.
acAnpeA,

. T T T T . T
min max Mq = Mq, > Mqo > Mqgs = max min Mq.
poR oax p q=p; Mqr 2 p; MQq2 = Py Mq2 aedx p q

An intuitive explanation for the first inequality is in minpea, maxqea,, p' Mq, q is chosen to maximize
p' Mq for any given q, therefore, p{ Mq; > p; Mq for any q # q;. Similar explanation goes for the
second inequality.

b) Show the ”<” direction holds up to O (%) approximation.

Setting Imagine playing a T-round game against a really hard adversary. For round t =1...7T":

e Player 1 plays with the distribution p* = w ¢ A,

= ety

e Player 2 plays with the distribution q* = arg maxp‘Mq.
q€A,

e Let £ = Mq', and Player 1 suffers the loss p? - €' = p' - Mq'.
e Let w! = (1...1), and update w!™ = w! exp(—ntt).

T
Trick Analyze 7 p'- Mq'.

t=1

1. By Jensen’s Inequality,
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pt> Mq > min max p' Mq.
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2. By the exponential weighted average algorithm,
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< max min p' Mq+ er.
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Putting the results in 1. and 2. together, we have

min max p' Mq < max min p' Mq+ er.
PEAL €A, €A, PEA,

T can be chosen as big as we wanted, and thus e = O (#) vanishes. It completes the prove of the
?<” direction

Theorem 18.10 (Generalization of Von Neumann’s Minimax Theorem). Let X C R™, Y C R™ be compact
convex sets. Let f : X xY — R be some differentiable function with bounded gradients, where f(-,y) is
convex in its first argument for all fized y, and f(x,-) is concave for in ils second argument for all fized x.
Then

inf = sup inf .
Jnf sup f(z,y) sup inf f(z,y)



