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17.1 Exponential Weights Algorithm

Given a loss function £(¢,y) € [0,1] that is convex in §, with n > 0. Let w! = (1,...,1),

1: fort=1,2,...,7 do

Algorithm receives prediction ff € {0,1} from expert i
> wiff
S5

J g

Algorithm predicts § =

2
3
4:  Nature reveals y* € {0,1}

5. Algorithm loss increases: LitL = LY, , + £(9¢, y?)
6w = wiexp(—nl(ff,y"))

7. end for

NOTE: f! and y* can be real-valued, but we are assuming for simplicity that they are binary.

Theorem 17.1. For any sequence of {y'}+, {f}}i+ we have

Lo < nLi +log N
MA S
1 — exp(—n)

for all i where LI = Zizl 0 f2y°).

7

Corollary 17.2. With n tuned appropriately

Lya < LET 4 log N + /20T log N

where i* is the index of the "best expert”. Notice that

LMA<LZ:+1
T — T

+ €T

where ep is approaching 0 at a rage of about O (%), since L1 is at most T.
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17.2 Hedge Setting

Theorems in this part are proposed by Freund and Schapire, 9@

Assuming that we have N actions (or bets), we do the following algorithm.

1: fort=1,...,7T do

2:  Alg chooses distribution p* € Ay

3:  Alg samples i; € p?

4:  Nature/adversary reveals ¢t € [0, 1]V

5. Alg suffers £ , but in expectation, Lyja =Y, £ip}
6: end for

Theorem 17.3. The hedge setting gives the same bound as the exponential weights algorithm when you
choose

t
t w

P==7
25w
Proof: For this proof, we will need to call on the following inequality that holds for all s € R:

logEexp(sX) < (e —1)EX.

Assume X is a random variable taking values in [0, 1] on round ¢. Let X* = ¢(f},y') w.p. wai
Let

N N
P, = —longf = —logZeXp (—an) .
i=1 i=1

Then

Dypq — Dy

1o Ziw?l
1 g( 225 )
o [ Soute-nttsty)
lg ( 225 )
—log Eexp(—na?)
—(e7" - 1EX"
—_e M Zz wzté( ;7yt)
(-t
e Liwifi
(e )
= (L—e MUy y")
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LA Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting.
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t pt
Recall that the loss of the algorithm on ¢ is é(%, y'). This is required for the last step of the sequence
J J

of inequalities and equations above.
Whence,

(L—e MLy = Y (Pep1 — D)

B

t

—log Z exp (—77L;TF+1) + log N

Il
A

< —log (exp (—nLZTH)) +log N
= T)LZ,TJr1 + log N,
which implies that
LIt +1log N
Lya < My 08N

1—e"

17.3 Zero-sum games

We are given n strategies/actions for P1 and m for P2, and the payoff matrix M € [—1,+1]"*™. Simulta-
neously,

P1 chooses i € [n]
P2 chooses j € [m].

As a result, P1 earns M;;, and P2 earns —M,;;.

Example: Rock-Paper-Scissors

0 -1 +1
M=|+1 0 -1
-1 +1 0

Definition 17.4 (Pure Strategy). With a pure strategy in a two player game, P1 chooses an action i € [n],
and P2 chooses an action j € [m]. P1 thus earns M;;, and P2 earns Nj;.

Definition 17.5 (Mixed Strategy). With a mixzed strategy in a two player game, P1 plays with a distri-
bution p € A,,, and P2 plays with a distribution q € A,,. P1 thus earns p' Mq = > -piq; M;j, and P2 earns

2%
P’ Na = Y piq;Nij.
i

17.4 Quick View on Von Neumann’s Minimax Theorem

minmaxp' Mq=maxminp' Mq
a p P g

The minimizer gets to see the maximizer’s strategy before picking his/her own, so the right side will
clearly be less than or equal to the left. The other way is more difficult.
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