
EECS 598-005: Theoretical Foundations of Machine Learning Fall 2015

Lecture 15: Neural Networks Theory
Lecturer: Matus Telgarsky Scribes: Xintong Wang, Editors: Yuan Zhuang

15.1 Neural Networks Definition and Overview

15.1.1 Neural Networks Definition

Definition 15.1 (Neural Network). A neural network is a function class defined by a DAG as follows:

Input #1

Input #2

Input #3

Output

Hidden
layer

Hidden
layer

Input
layer

Note: A neural network is not necessarily fully connected.

• Input layer nodes: gi(x) = xi.

• Internal nodes: gi(x) = σ(
∑
g∈parents of gi

wigg(x) + wi0).

• Typical choices of activation function σ:

ReLu: σR(r) = max{0, r}.

−10 −5 0 5 10

0

2

4

6

8

10

r

σ

ReLu

Sigmoid: σS(r) = 1
1+exp(−r) .

15-1

Lecture 15: Neural Networks Theory 15-2

−10 −5 0 5 10

0

0.2

0.4

0.6

0.8

1

r

σ
Sigmoid

• Output: Neural networks outputs value at output node and it can be multivariate.

• N := {fixed DAG with varying weights} = {x → f(x; w) : w ∈ Rp}, where p is the total number of
weights and thresholds.

Remark: Current practical neural networks have some variations.

15.1.2 Theory Overview

We have three aspects of theory (for classification specific setting):

• Approximation/Representation
How well the function class fits the problem?
Known: Neural networks can fit “arbitrary” continuous functions.
Unknown: Are good representations learnable? What should be the size and the number of layers of
a good representation?

• Optimization
How well you optimize risk over the function class (on a finite sample)?
Little theory in this aspect: training O(1) size neural network is NP-hard; in practice, we use gradient
descent (on a nonconvex function).

• Estimation
Difference in risk between sample and distribution.
There is a nice VC theory, which is very difficult. It is still unclear what this VC theory means in
practice.

Remark: In terms of non-classification problems, many successes of neural networks are for unsupervised
learning.

Lecture 15: Neural Networks Theory 15-3

15.2 Representation/Approximation

15.2.1 Neural Network with One Internal Node

Suppose we have only one internal(non-input) node in a neural network. With activation function σ(r) =
1[r ≥ 0], we can exactly represent the indicator function for a halfspace.
Specifically, the following diagram shows the hyperplane {x ∈ Rd : 〈w,x〉 = w0} and a classification achieved
by the corresponding halfspace indicator x 7→ σ(〈w,x〉 −w0).
y

x

w
· x

=
w

0

1

0

Now suppose σ is bounded and continuous, with limr→∞ σ(r) = 1 and limr→−∞ σ(r) = 0. Consequently,
there exists M such that

∀r > M , σ(r) ∈ [1− ε, 1 + ε] and ∀r < −M , σ(r) ∈ [−ε, ε]

Thus, given any τ > 0, the function f(x) := σ(Mτ (〈w,x〉−w0)) approximates the earlier halfspace indicator
in the following sense:

f(x) ∈

{
[−ε,+ε] when 〈w,x〉 ≤ w0 − τ ,
[1− ε, 1 + ε] when 〈w,x〉 ≥ w0 + τ .

On the other hand, f is not controlled in any way when | 〈w,x〉 − w0| < τ . This approximate halfspace
indicator f is depicted as follows.

y

x

|w
· x
−
w

0
| =

τ
1

0

2τ

w

Lecture 15: Neural Networks Theory 15-4

15.2.2 Neural Network with k Halfspaces

Next note how a polyhedron P can be approximated by adding another layer to the preceding construction.
Suppose the polyhedron is specified via k halfspaces, and each of these is approximated as before with some
τ ∈ (0, 1

4k), giving a function gi.

Input Output

Halfspace
1...k

Input
layer

Output
layer

Now consider adding a final node defined as g(x) := σ(Mτ (
∑
i gi(x) − (k − 1/2))). To see that this ap-

proximates an indicator on P , consider any x which does not fall within the error region of width 2τ of any
of the preceding approximate halfspace indicators.

If this x also fails to land within at least one of the halfspaces, then
∑
i gi(x) ≤ (k− 1)(1 + τ) < k− 1/2− τ ,

thus g(x) ∈ [−ε,+ε].On the other hand, if x is in the intersection of the halfspaces, then
∑
i gi(x) ≥ k(1−τ) >

k − 1/2 + τ , thus g(x) ∈ [1− ε, 1 + ε].

Homework Problem: based on what we have said so far, for any continuous f : [0, 1]d → [0, 1] and
any ε > 0, there exists a 3 layer (+input layer) neural network g with

∫
[0,1]d

|f(x)− g(x)|dx ≤ ε.

15.3 Estimation/Statistics

The main results in this section will be VC dimension bounds which are polynomial in the number of layers
L. Before giving these bounds, note that it is not clear how to specify a meaningful Rademacher complexity
bound which is polynomial in the number of layers.
For instance, consider a fixed DAG representing the layout of a neural network, and suppose the weights
w ∈ Rp obey a constraint ‖w‖1 ≤ B (which is natural for instance in the case of linear separators). Then
by placing weight B

L along each edge of a chain in the network, the constraint ‖w‖1 ≤ B is obeyed, and it
can be seen as the Lipschitz constant of the function computed by the network and thus its Rademacher
complexity are upper bounded by (BL)L.

15.3.1 VC dimension of Linear Threshold Network(LTN)

Notations

• S: a fixed set of n examples.

Lecture 15: Neural Networks Theory 15-5

• k: number of non-input nodes in the neural network. d is the total number of input nodes.

• p: total number of parameters in the neural network. pi is the number of parameters involving node
i. p =

∑
i pi. Moreover, suppose p ≤ n.

• L: total number of layers in the neural network.

• Di := |All output values possible for non-input nodes up to i|, meaning

Di = |{(gd+1(S;w), gd+2(S;w), . . . , gd+i(S;w)) : w ∈ Rp}| .

This definition is the key idea of the proof: rather than keeping track of the possible outputs of the
output node of the network, the outputs of all nodes are considered.

It will now be shown by induction that

Di ≤
i∏

j=1

(
en

pj

)pj
.

Consider the base case i = 1; by Sauer’s Lemma, since n ≥ p ≥ p1,

D1 ≤
(
en

p1

)p1
.

Now consider some i > 1. Even though S is fixed, it is no longer the case that (non-input) node i is receiving
a fixed set of inputs, since it is potential taking input from non-input nodes. However, for any fixed outputs
of the parents to node i, Sauer-Shelah can once again be used (once again using n ≥ p ≥ pi). Combining
this with the inductive hypothesis,

Di ≤
∑

possible inputs to i

(
en

pi

)pi
≤ Di−1

(
en

pi

)pi
≤

i∏
j=1

(
en

pj

)pj
.

To complete the VC dimension calculation, first note that every distinct output for the network also incre-
ments the value of Dk, ΠN (n) ≤ sup|S|=nDk, where N denotes this class of networks. Secondly, note that
Dk does not actually depend on S, the upper bound holds for all S with |S| ≤ n. As such we have,

ΠN (n) ≤ sup
|S|=n

Dk ≤
k∏
i=1

(
en

pi

)pi
≤

k∏
i=1

(en)
pi = (en)

p
.

To finish the calculation, it is possible to use a guess-and-check. In order to show that the VC dimension is
at most d, it suffices to show that ΠN (d) < 2d. As such, suppose n ≥ cp ln(p) for some c ≥ 0. By the above
calculation,

ln(ΠN (n)) ≤ p ln(ecp ln(p)) = p ln(p) + p(1 + ln(c) + ln(ln(p))).

Since this is strictly less than cp ln(p) ln(2) for sufficiently large c, it follows that the VC dimension is
O(p ln(p)).

Lecture 15: Neural Networks Theory 15-6

15.3.2 Further VC dimension results (without proof)

The following table summarizes worst case VC dimension bounds given various conditions. There are two
key points here: first, the linear threshold network really did not gain much power (whereas other networks
do), and secondly the choice of σ is essential.

σ Worst case VC dimension

r 7→ 1[r ≥ 0] With one non-input node (k = 1), this is perceptron, thus VC is
Θ(p).
In general, the VC dimension is Õ(p ln(p)); layers did not matter
much in this example!

piecewise polynomial Ω(pL) and Õ(pL2); this also holds in the piecewise affine case (in
particular for the popular choice σ(r) = max{0, r}).

convex for x < 0, concave for
x > 0, and satisfying limit
properties limr→∞ σ(r) = 1 and
limr→−∞ σ(r) = 0

It’s possible for VC dimension to be infinite! (Note however that
other members of this class, for instance the sigmoid σ(r) = 1/(1+
exp(−r)), have VC dimension polynomial in p and L.)

