13.1 Rademacher Complexity

Given a function class $G : \mathcal{X} \to \mathbb{R}$, let $\sigma_1, \ldots, \sigma_m$ be i.i.d. Rademacher random variables (i.e. ± 1 with probability $\frac{1}{2}$), and let $S = (x_1, \ldots, x_m)$ be a sample from \mathcal{X}. Then the empirical Rademacher complexity is defined as:

$$\hat{\mathcal{R}}_S(G) = \mathbb{E}_\sigma \left[\sup_{g \in G} \frac{1}{m} \sum_{i=1}^{m} \sigma_i g(x_i) \right],$$

and the Rademacher complexity is defined as:

$$\mathcal{R}_m(G) = \mathbb{E}_{S \sim D^m} \left[\hat{\mathcal{R}}_S(G) \right].$$

We note that the Rademacher complexity is distribution-specific.

Based on Rademacher complexity, we can show the following generalization bound:

Theorem 13.1. Let G be a function class mapping \mathcal{X} to $[0, 1]$. Then, with probability at least $1 - \delta$ and for all $g \in G$,

$$\mathbb{E}_{x \sim D}[g(x)] \leq \frac{1}{m} \sum_{i=1}^{m} g(x_i) + 2 \mathcal{R}_m(G) + \sqrt{\frac{\log(1/\delta)}{2m}},$$

where $S = (x_1, \ldots, x_m) \sim D^m$.

The proof of the above theorem requires McDiarmid’s inequality, which is presented as following:

Theorem 13.2 (McDiarmid’s inequality). Let D be a distribution on \mathcal{X}, and let f be a function taking finite subsets of \mathcal{X} as input. Suppose that f is “Lipschitz” (i.e. $|f(S) - f(S')| \leq c$ for some constant c if S and S' differ by one element). Then with probability at least $1 - \delta$,

$$f(S) - \mathbb{E}_{S' \sim D^m}[f(S')] \leq \sqrt{\frac{m^2 c^2}{2} \log(1/\delta)},$$

where $S \sim D^m$.

Proof: (Sketch) Let $S = (x_1, \ldots, x_m) \sim D^m$. We define a martingale $Z_i = \mathbb{E}[f(S) - \mathbb{E}[f(S)]|x_1, \ldots, x_{i-1}]$. It is easy to see that $|Z_i - Z_{i-1}| \leq c$ for all i. Then applying Azuma’s inequality to the martingale difference sequence $\{Z_i\}$ yields the desired result. See Appendix D of the textbook for a full proof. ■

We are ready to prove Theorem 13.1.

Proof of Theorem 13.1: To ease some notations, we define: $\mathbb{E}g := \mathbb{E}_{x \sim D}[g(x)]$, $\hat{\mathbb{E}}_S g := \frac{1}{|S|} \sum_{x_i \in S} g(x_i)$, and $\Phi(S) := \sup_{g \in G} (\mathbb{E}g - \hat{\mathbb{E}}_S g)$.

The proof is composed of two parts:
1. \(\Phi(S) \leq \mathbb{E}_{S \sim D^m}[\Phi(S)] + \sqrt{\frac{\log(1/\delta)}{2m}}. \)

2. \(\mathbb{E}_{S \sim D^m}[\Phi(S)] \leq 2\mathcal{R}_m(G). \)

For part 1, we begin with showing that \(|\Phi(S) - \Phi(S')| \leq \frac{1}{m}\) when \(S \) and \(S' \) differ by one element (and let it be the \(i \)th one):

\[
\Phi(S) - \Phi(S') = \sup_{g \in G} (\mathbb{E}g - \hat{\mathbb{E}}_S g) - \sup_{g' \in G} (\mathbb{E}g' - \hat{\mathbb{E}}_{S'} g') \\
\leq \sup_{g \in G} (\mathbb{E}g - \hat{\mathbb{E}}_S g - \mathbb{E}g + \hat{\mathbb{E}}_{S'} g) \\
= \sup_{g \in G} \frac{g(x'_i) - g(x_i)}{m} \\
\leq \frac{1}{m}
\]

The first inequality holds since supremum of difference \(\leq \) difference of supremum.

By symmetry, we have \(|\Phi(S) - \Phi(S')| \leq \frac{1}{m}\). Then, by setting \(c = \frac{1}{m} \), applying McDiarmid’s inequality yields the desired inequality.

For part 2,

\[
\mathbb{E}_{S \sim D^m}[\Phi(S)] = \mathbb{E}_{S \sim D^m} \left[\sup_{g \in G} (\mathbb{E}g - \hat{\mathbb{E}}_S g) \right] \\
\leq \mathbb{E}_{S,S' \sim D^m} \left[\sup_{g \in G} (\hat{\mathbb{E}}_{S'} g - \hat{\mathbb{E}}_S g) \right] \\
= \mathbb{E}_{S,S' \sim D^m} \left[\sup_{g \in G} \frac{1}{m} \sum_{i=1}^m (g(x'_i) - g(x_i)) \right] \\
= \mathbb{E}_{S,S' \sim D^m, \sigma} \left[\sup_{g \in G} \frac{1}{m} \sum_{i=1}^m \sigma_i (g(x'_i) - g(x_i)) \right] + \mathbb{E}_{S \sim D^m, \sigma} \left[\sup_{g \in G} \frac{1}{m} \sum_{i=1}^m -\sigma_i g(x_i) \right] \\
= 2\mathcal{R}_m(G)
\]

Combining the two parts gives us

\[
\mathbb{E}_{X \sim D}[g(x)] \leq \frac{1}{m} \sum_{i=1}^m g(x_i) + 2\mathcal{R}_m(G) + \sqrt{\frac{\log(1/\delta)}{2m}}.
\]

Hence the proof is concluded.

13.2 Generalization Bound for Binary Classification

Given a hypothesis class \(H \) with functions taking \(\pm 1 \) values, the associated loss class of \(H \) is defined as:

\(G := \{ g_h(x,y) = 1 \mid h(x) \neq y \mid h \in H \}. \)

Lemma 13.3. For any sample \(S = ((x_1,y_1), \ldots, (x_m,y_m)) \), we have \(\mathcal{R}_S(G) = \frac{1}{2} \mathcal{R}_{S_X}(G) \), where \(S_X = (x_1, \ldots, x_m) \).

Proof: The proof is easy. See Lemma 3.1 in the textbook.
The following theorem demonstrates an application of Rademacher complexity that provides us a generalization bound for binary classification.

Theorem 13.4. For binary classification with 0-1 loss, let H be a class hypothesis mapping X to $\{-1, 1\}$. Then with probability $\geq 1 - \delta$, for any $h \in H$, we have:

$$R(h) \leq \hat{R}_S(h) + R_m(H) + \sqrt{\frac{\log(1/\delta)}{2m}},$$

where $S \sim D^m$.

Proof: This directly follows from Theorem 13.1 and Lemma 13.3. ■

13.3 Massart’s Lemma

Lastly, we present **Massart’s lemma**, which gives us a better expression of $R_m(\cdot)$.

Theorem 13.5 (Massart’s lemma). Let $A \subseteq \mathbb{R}^m$ be a finite set of points with $r = \max_{x \in A} \|x\|_2$. Then

$$\mathbb{E}_\sigma \left[\max_{x \in A} \sum_{i=1}^m x_i \sigma_i \right] \leq r \sqrt{2 \log(|A|)}.$$

Proof: Let $t > 0$ be a number to be chosen later.

\[
\exp \left(t \mathbb{E}_\sigma \left[\max_{x \in A} x^\top \sigma \right] \right) \leq \mathbb{E}_\sigma \left[\exp(t \max_{x \in A} x^\top \sigma) \right] \quad \text{(Jenson’s inequality)}
\]

\[
\leq \mathbb{E}_\sigma \left[\sum_{x \in A} \exp(t x^\top \sigma) \right] \quad \text{(summation } \geq \text{ maximum)}
\]

\[
= \sum_{x \in A} \mathbb{E}_\sigma \left[\exp(t x^\top \sigma) \right]
\]

\[
= \sum_{x \in A} \prod_{i=1}^m \mathbb{E}_\sigma \left[\exp(t x_i \sigma_i) \right]
\]

\[
= \sum_{x \in A} \prod_{i=1}^m \exp \left(\frac{(2tx_i)^2}{8} \right) \quad \text{(applying Hoeffding’s lemma)}
\]

\[
= \sum_{x \in A} \exp \left(\frac{t^2}{2} \sum_{i=1}^m x_i^2 \right) \quad \text{(recall that } r = \max_{x \in A} \|x\|_2)\]

Taking log, and dividing by t, we get

$$\mathbb{E}_\sigma \left[\max_{x \in A} x^\top \sigma \right] \leq \frac{\log(|A|)}{t} + \frac{tr^2}{2}.$$

It is minimized when taking $t = \sqrt{\frac{\log(|A|)}{r^2/2}} = \sqrt{2 \log(|A|)}$, and it leads to the bound:

$$\mathbb{E}_\sigma \left[\max_{x \in A} x^\top \sigma \right] \leq r \sqrt{2 \log(|A|)}.$$

■