10.1 Review of Sauer’s Lemma

Sauer’s Lemma says that given a concept class \mathcal{C} with VC-dimension d, we have

$$\prod_{\mathcal{C}} (m) \leq \sum_{i=0}^{d} \binom{m}{i} = O(m^d)$$

Proof Sketch: Take $\mathcal{C}|_S$ with $S \subseteq X, |S| = m$.

<table>
<thead>
<tr>
<th>n_1</th>
<th>x_1</th>
<th>x_2</th>
<th>...</th>
<th>x_m</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>n_2</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 1: Shifting Table for Sauer’s Lemma

Steps:

1. Modify the table using “shifting” until no more shifting possible.

2. Show three claims

 (a) The number of unique rows is the same after shifting
 (b) The shifting operation did not increase the VC-dim of the table
 (c) If a row contains columns i_1, \ldots, i_k with 1s, then those columns are shattered in the table.

Conclusion: there are no more than d 1s in any row, hence the number of rows is at least the number of subsets of $[m]$ of size at most d. ■

10.2 Big Theorem

Theorem 10.1. Let \mathcal{C} be a class with VC-dim d. Given any consistent learning algorithm A that returns $h_S \in \mathcal{C}$ on sample $S \sim D^m$, there is a constant c_0 such that $R(h_s) \leq \epsilon$ with probability at least $1 - \delta$ as long as

$$m \geq c_0 \left(\frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon} \right)$$

Proof: Use the two-sample trick. For any class \mathcal{C} we have

$$Pr[R(h_S) > \epsilon] \leq \prod_{\mathcal{C}} (2m)e^{-mc/4} + e^{-mc/8}$$
It suffices to bound each term in the sum by \(\delta/2 \). This is achieved when
\[
m \geq \frac{8 \log(2/\delta)}{\epsilon}
\]
for the right-hand term. Now, Sauer’s lemma says that
\[
\prod_C (2m) \leq m^d
\]
so the left-hand sum term is upper bounded by
\[
(2m)^d e^{-mc/4} \leq \delta/2
\]
Solving for \(m \) here, we need
\[
m \geq 4 \left(\frac{d \log 2m + \log(2/\delta)}{\epsilon} \right)
\]
It is easy to check that the inequalities 10.1 and 10.2 are satisfied when
\[
m = c \frac{d \log(1/\epsilon) + \log(1/\delta)}{\epsilon}
\]
for some \(c \).

By solving for \(\epsilon \), we establish the following corollary:

Corollary 10.2. When \(m \) is fixed, we can guarantee an error rate
\[
\epsilon = 8 \left(\frac{d \log m + \log(1/\delta)}{m} \right)
\]

10.3 Lower Bounds

One might ask whether we can get error rate \(\epsilon \) with \(m = \sqrt{d/\epsilon} \), or possibly \(\log d/\epsilon \). The answer is no, and we can construct “hard” (counter)examples of this. That is, there exist \(\mathcal{X}, \mathcal{C}, \mathcal{D} \) where one needs at least \(\theta(d/\epsilon) \) sample to even have 50% chance of error \(\epsilon \).

Two tricks:

1. Clearly, if \(\text{VC-dim}(\mathcal{C}) = d \), you need \(d \) samples to learn the target. Let \(U \) be the set shattered by \(\mathcal{C} \). Let \(\mathcal{D} \) be a uniform distribution on \(U \). Let \(\epsilon = \frac{1}{2d} \) (the 2 is somewhat arbitrary). Then to get \(\epsilon \) error we need a sample \(S \) to contain all \(U \) before \(R(h_s) \leq \epsilon, |S| \geq d \).

2. Also, to achieve error \(\epsilon \), we also need \(m \geq O(1/\epsilon) \). Let \(\mathcal{X} = \{x_0, x_1\} \). Let \(\mathcal{C} \) be all functions \(\mathcal{X} \to \{0, 1\} \). Let \(\mathcal{D} \) be the distribution on \(\{x_0, x_1\} \) where \(\Pr[\{x_0\}] = 1 - 2\epsilon \) and \(\Pr[\{x_1\}] = 2\epsilon \).

\[
\Pr (R(h_s) \geq \epsilon) \geq \Pr (x_1 \text{ not observed after } m \text{ samples})
\]
\[
= (1 - 2\epsilon)^m
\]

Set \(m = 1/(2\epsilon) \) and we get \((1 - 2\epsilon)^{1/(2\epsilon)} \approx 1/e\).

Putting it all together Let \(\mathcal{X} = \{x_0, x_1, ..., x_{d-1}\} \), where the VC-dim of \(\mathcal{C} \) is \(d \), so that \(\mathcal{C} \) shatters \(\mathcal{X} \). Construct a distribution \(\mathcal{D} \) over \(\mathcal{X} \) such that \(\Pr[\{x_0\}] = 1 - 4\epsilon \), and for all \(i \geq 1 \), \(\Pr[\{x_i\}] = 4\epsilon/(d - 1) \). Fact: to ensure error rate \(\leq \epsilon \), need to see half of the \(d - 1 \) rare points. So
\[
\Pr (R(h_s) \leq \epsilon) \leq \Pr \left(|S - \{x_0\}| \geq \frac{d - 1}{2} \right)
\]
Aside Let
\[Z_i = \begin{cases}
1 & \text{w.p. } \epsilon \\
0 & \text{w.p. } 1 - \epsilon
\end{cases} \]

We know that
\[\Pr \left(\sum_{i=1}^{m} Z_i = 0 \right) \leq e^{-m\epsilon} \]

and we saw
\[\Pr \left(\sum_{i=1}^{m} Z_i \leq \frac{\epsilon m}{2} \right) \leq e^{-m\epsilon/4} \]

I need
\[\Pr \left(\sum_{i=1}^{m} Z_i \geq 2\epsilon m \right) \leq e^{-m\epsilon/3} \]

(challenge: prove this).

Now, let \(Z_i = 1 \) if sample \(i \) was rare, 0 if not. (So \(\Pr[Z_i = 1] = 4\epsilon \)). Let \(m = \frac{d-1}{16\epsilon} \). So

\[
(*) \leq \Pr \left(\sum_{i=1}^{m} Z_i \geq \frac{d-1}{2} \right) = \Pr \left(\sum_{i=1}^{m} Z_i \geq 2\mathbb{E} \sum_{i=1}^{m} Z_i \right) \\
\leq e^{-m(4\epsilon)/3} = e^{-(d-1)\epsilon/(16\epsilon)} = e^{-(d-1)/16}
\]

(since \(\mathbb{E} \sum_{i=1}^{m} Z_i = 4\epsilon m = \frac{4\epsilon(d-1)}{16\epsilon} = \frac{d-1}{4} \)).

Given \(d \), this is some constant less that \(1 - \frac{1}{K} \) where you can have \(K = 100, 1000, \) etc. This shows that if you choose \(m \) samples for \(m \) as above, then you have have a reasonable probability of having a high error rate.