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EECS598: Prediction and Learning: It’s Only a Game Fall 2013

Lecture 9: Applications of Minimax: LP and Boosting
Prof. Jacob Abernethy Scribe: Chansoo Lee

Announcements

* Lecture on 10/16 is rescheduled to 9:30AM-11AM. Location TBA.

9.1 Minimax Theorem Review

Minimax Theorem states
min max pTMq = maxmin pTMq.
p q q p

It means ;
dp*Vqst. pPMq<V and Aq ' Vp st. pMq" >V

Definition 9.1 (e-Optimal). The mixed strategies p and q are e-optimal if there exists V such that for
all p” and q’,
p"Mq <V+e and p"Mq>V-¢

9.2 Approximately Solving a Linear Program

Definition 9.2 (Linear Program). A Linear program is a problem that can be expressed in the canonical
form:

maximize clx

subject to al'x<bl v jel and
x; >0 Vie[n]

Lemma 9.3. Without loss of generality, we can make the following modifications to the canonical form:
(i) Add an additional constraint that x € A, (due to linearity)
(ii) Assume bj =0Vj €I, by spreading b; into al using (i).

Definition 9.4 (Linear Program). An alternate form for linear programs is:

maximize d
subject to al'x<0V jel, xenp,, and
cTx>d.

We will use the above definition unless noted otherwise.
Definition 9.5 (Feasibility). An LP is feasible if there exists x € A, that satisfies all the constraints.
Given a feasibility checker, we can perform a binary search on d within the interval [min(c), max(c)]

(where the min and max are taken over the coordinates of c) to find an e-optimal solution to LP
with log(1/€) added time complexity.
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Goal: Find an algorithm A such that for any feasibility checker, A returns x € A,, such that a]Tx <e
for all j € I, or INFEASIBLE if there is no such x.

Algorithm 1: EWA-LP

xD e (L, 1y

fort=1toTdo

(£) _ T
a.’ < argmax,efajer}d X

if a’x( < ¢ then
L return x?)

else

t
L (t+1) xl(- )exp(—qai)
X; -+t -

1 P(t+1)

return INFEASIBLE

Proof. The regret bound of EWA-LP is

1 1
T Zx(t)ait) < TRegretT

Suppose that LP is feasible but EWA-LP returns INFEASIBLE and T > c?logn/e?. Then,

1 1 ) 1 logn
e=(Te)< = Zx(”a* < —Regrety = cy|—2— <e,

a contradiction. (The second inequality follows from the assumption that the LP is feasible). [
Remark: The number of experts in EWA-LP is independent of the number of constraints.

9.3 Boosting via Minimax Duality

Setup: Let X be a data space (e.g. R?). We have a set of hypothesis {c X — {0, 1}}, which contains

a correct hypothesis. Let C(x) be the true label ¥V x € X. We want to find ¢ € c such that the error
rate
Peq[é(x) # C(x)]

is small for any distribution g € A(X).

Weak Hypotheses: It is easy to find weak hypotheses H = {h: X — {0, 1}}.
Example: If X CIR", then define H = {h; .:i=1,...,n and c € R} where

1 ifx;>c
Iy o(x) = i 2
ie(%) {0 otherwise

The function h; . is called a decision stump.
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Weak Learning Assumption: For a positive constant y, the weak learning assumption states:

For any distribution q € A(X'), there exists h € H such that

Pegllix) = ()] < 5

r
2

Question: Is there a distribution p on H such that the weighted majority

c,(x) = 1 if Y ey p(h)h(x) > %
P 0 otherwise

achieves zero error (a.k.a. strong learning)?

Theorem 9.6. Weak learning implies strong learning.

Proof. Suppose H satisfies the weak learning assumption, and let xq,
n x |H| matrix such that

M. = +1 1fhl(x])¢c(x])
7 ]1-1 otherwise

..., X, be the data. Let M be a

The weak learning assumption states that for any q € A,, there exists j € [m] such that

Py 4[hj(x) = C(x)] <

1
2 2
This is equivalent to
qTM ej<-y
which in turn is equivalent to
. T
mqlnm]jax q Me;<-y

By the minimax theorem, the above is true iff it’s dual is. The dual
dpeA, st eiTMpS)/ Vie[n]

is exactly strong learning.

!Diagram credit: Cat Saint Croix
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