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. Nash Equilibrium and Existence

In the context of game theory, the concept of Nash Equilibrium is introduced. The Existence of a
Nash Equilibrium pair is proven.

.. Nash Equilibrium

In the context of game theory, a pair (x∗, y∗) is a Nash equilibrium pair if x∗ is a best response to y∗

and if y∗ is a best response to x∗.

This is equivalent to an event where Player 1 has no regret to any other action, that is

x∗>Ay∗ ≥ ei
>Ay∗ ∀i ,

and Player 2 has no regret to any other action, that is

x∗>Ay∗ ≥ x∗>Aej ∀j .

.. Existence of a Nash Equilibrium

We will prove that in any game in this context, there is always at least one Nash equilibrium:

Theorem .. (Nash). For any bimatrix game (A,B) there exists at least one Nash equilibrium pair.

The proof uses Brouwer’s fix point theorem of topology:

Theorem .. (Brouwer’s fix point). For any convex compact B ⊂R
n and for any continuous function

f : B→ B, there exists x∗ ∈ B such that f (x∗) = x∗.

Proof (Nash):

Define a map f : ∆n ×∆m→ ∆n ×∆m by f (x.y)→ (x′ .y′) where

ci(x,y) := max(0,ei
>Ay− x>Ay) and dj(x,y) := max(0,x>Aej − x>Ay)

and

x′i =
xi + ci(x.y)

1 +
∑n
i′=1 ci′ (x.y)

and y′i =
yj + dj(x.y)

1 +
∑n
j ′=1dj ′ (x.y)

.

Observe that (x.y) is a Nash equilibrium if and only if ci(x.y) = 0 ∀i and dj(x.y) = 0 ∀j (observe too
that such (x.y) will then be a fix point of f ).



Lecture : Game Theory  

Using Brouwer’s fix point theorem, there is a fix point (x.y) of f , that is for each i and j:

xi =
xi + ci(x.y)

1 +
∑n
i′=1 ci′ (x.y)

and yi =
yj + dj(x.y)

1 +
∑n
j ′=1dj ′ (x.y)

.

We want to show that such (x.y) is a Nash equilibrium pair. By way of contradiction, assume there
exists an i such that ci(x.y) > 0.

Since the average payoff can’t be worst than each and all payoffs of choices ei , there must exist
some k ∈ [n] such that ck(x.y) = 0.

But then

xk =
xk + ck(x.y)

1 +
∑n
i′=1 ci′ (x.y)

≤ xk
1 + ci(x.y))

< xk .

This is a contradiction, so we were wrong in assuming that ci(x.y) > 0.

The same argument holds for y and dj(x.y). It follows that (x.y) is a Nash equilibrium pair.

. Von Neumann Minimax Theorem

Von Neumann Minimax Theorem is stated and proven in two different ways.

.. Von Neumann Minimax Theorem

In the context of game theory, consider a zero sum game where Player 1 has a payoff matrix A and
Player 2 has a payoff matrix B (note that B = −A). Player 1 plays x ∈ ∆n and Player 2 plays y ∈ ∆m.

Player 1 wants to play an strategy x so that no matter what Player 2 does, Player 1 can be ensured
a certain minimum payoff, that is

max
x

min
y
x>Ay .

Player 2 wants also an strategy y so that no matter what Player 1 does, Player 2 can be ensured a
certain minimum payoff, that is

max
y

min
x
x>By = −min

y
max
x
x>Ay .

Theorem .. (von Neumann Minimax Theorem).

max
x

min
y
x>Ay = min

y
max
x
x>Ay

From this theorem it follows that Player 1’s strategy guarantees him a payoff of maxxminy x>Ay re-
gardless of Player 2’s strategy, and similarly Player 2 can guarantee himself a payoff of −maxxminy x>Ay
regardless of Player 1’s strategy.
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.. Proof 

In the game (A,−A), we prove that

max
x

min
y
x>Ay ≥min

y
max
x
x>Ay

(the other side ≤ is trivial and left as an exercise).

Choose any Nash equilibrium (x∗, y∗). It follows that

x∗>Ay∗ ≥ x>Ay∗ ∀x and x∗>Ay∗ ≤ x∗>Ay ∀y .

We get
x∗>Ay ≥ x>Ay∗ ∀x,y .

This implies that
min
y
x∗>Ay ≥max

x
x>Ay∗

which in turn implies that
max
x′

min
y
x′>Ay ≥min

y′
max
x
x>Ay′ .

The theorem follows.

.. Proof 

Using the Exponential Weights Algorithm, given a sequence of loss vectors l1, . . . , lT , we generate
distributions p1, . . . ,pT , so that

T∑
t=1

pt · lt ≤min
ρ

T∑
t=1

ρ · lt +R(T ) .

We can also talk about payoffs a1, . . . , aT so that

T∑
t=1

pt · at ≥max
ρ

T∑
t=1

ρ · at −R(T ) .

We put this in the context of game theory, with Player 1 playing xt = pt and setting at = Ayt so
that Player 2 plays yt = A−1at. The previous equations become

T∑
t=1

x>t ayt ≤min
y

T∑
t=1

x>Ayt +R(T ) and
T∑
t=1

x>t ayt ≥max
x

T∑
t=1

x>Ayt −R(T ) .

Set v(T ) =
∑T
t=1 x

>
t Ayt and x̄ = 1

T

∑T
t=1 xt, ȳ = 1

T

∑T
t=1 yt, to obtain

v(T )
T

+
R(T )
T
≥max

x
x>Aȳ ≥ x̄Aȳ and

v(T )
T
− R(T )

T
≤min

y
x̄>Ay ≤ x̄Aȳ .



Lecture : Game Theory  

It follows that

max
x
x>Aȳ ≥ x̄Aȳ + 2

R(T )
T

and min
y
x̄>Ay ≥ x̄Aȳ − 2

R(T )
T

.

Therefore, we have an optimal strategy and a Nash equilibrium.
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