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Announcements

• Lecture Videos are on CTools

• You can reach the GSI at email eecs-plg@umich.edu

. Recap: Online prediction and combining advice

• Here, we have N experts

• For every time step t = 1, . . . ,T , each expert says f t1 , . . . f
T
N

• An algorithm then combines the advice as a weighted average:

ŷt =

∑N
i=1w

t
i f
T
i∑N

i=1w
t
i

• Algorithm then observes outcome yt, and suffers loss `(ŷt , yt)

. Sequential Decision Making / Game Playing (a.k.a Hedge setting)

• On each round, algorithm chooses action i ∈ [N ].

• Alternatively algorithm choses a distribution pt ∈ 4N
• Nature chooses `t ∈ [0,1]N

• Algorithm suffers expected loss pt · `t =
∑N
i=1p

t
i`
t
i

. Predictive Setting vs. Action Setting

Predictive Setting Action Setting

Loss `(f ti , yt) `ti

Weight wti = exp

−η t−1∑
s=1

`(f si , ys)

 wti = exp

−η t−1∑
s=1

`si


Play ŷt =

∑N
i=1w

t
i f
T
i∑N

i=1w
t
i

pt =
〈
wt1∑
jw

t
j

,
wt2∑
jw

t
j

, . . . ,
wtN∑
jw

t
j

〉

Algorithm Loss `(ŷt , yt) = `

∑N
i=1w

t
i f
T
i∑N

i=1w
t
i

, yt

 pt · `t =

∑
iw

t
i`
t
i∑

iw
t
i
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Figure : Jensen’s Inequality

. Finding a Bound on the Loss of EWA

We need the following preliminaries to do this derivation:

.. Jensen’s Inequality

Jensen’s inequality follows from (/is) the definition of convexity. For a convex function g:

E [g(X)] ≥ g (E[X]) .

Jensen’s inequality can be visualized with the graph in Figure . Imagine a Bernoulli random
variable with parameter p, and the convex function g. E[g(X)] = (1 − p)g(0) + pg(1), which is the
line between g(0) and g(1). g(E[X]) = g(p), which is just the convex function g in the range [0,1].

The bottom row of the Prediction vs. Action (.) table can be viewed with Jensen’s inequality
when

X = f ti i ∼
〈
wti∑
jw

t
j

〉
g(x) = `(x,yt).

When phrased like this, the loss in the prediction setting is equivalent to g(E[X]), and the loss in
the action setting is equivalent to E[g(X)]. When viewed in this light, the loss of the prediction
setting is bounded by the loss in the action setting.

.. Other Useful Lemmas

The following identity can be used to find a tighter bound:

Lemma ..
logE[esX] ≤ (es − 1)E[X]; for X ∈ [0,1].
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The following identity provides a less tight bound, but it is easier to work with (we will use this
in the upcoming derivation)

Lemma ..

logE[esX] ≤ sE[X] +
s2

8
; for X ∈ [0,1].

.. Loss Bound

First lets bound − logwt+1 + logwt where wt =
∑
jw

t
j

− logwt+1 + logwt = − log
wt+1

wt

= − log


∑
iw

t
i exp

(
−η`ti

)
∑
iw

t
i


≥
η
∑
iw

t
i`
t
i∑

iw
t
i

−
η2

8

The inequality at the end is a result of Lemma ..

Finally, we’ll bound the total loss (LTMA) with the loss of a single expert i (LTi ).

ηLTi + logN = − log
(
e−ηL

T
i

)
+ log(N )

≥ − log
(
wT+1

)
+ log(w1)

=
T∑
t=1

− log(wt+1) + log(wt)

≥
T∑
t=1

η

∑
iw

t
i`
t
i∑

iw
t
i

−
η2

8

= ηLTMA −
T η2

8

LTMA ≤ L
T
i +

logN
η

+
T η

8

.. Tuning η

Example:

min
η

A
η

+Bη = 2
√
AB

A general trick is that the minimum of additive convex functions is achieved when all of the terms
are equal.

This is bad notation for saying the support of X is [0,1].
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Lets tune our bound on loss.

LTMA ≤ L
T
i +

logN
η

+
T η

8

A = logN

B =
T
8

LTMA ≤ L
T
i +O

(√
T logN

)
︸          ︷︷          ︸

RegretT

.

Note, that our regret is sublinear in T . In other words

LTMA
T
−
LTi
T

= o(1).

This is also known as the “no regret property” or hannan consistency[citation needed].

We can also use Lemma . to get a similar result for any expert i:

Theorem .. For any expert i

LTMA ≤ L
T
i +O

(√
LTi logN

)
sketch.

LTMA ≤
1

1− e−η
(
ηLTi + logN

)
≈ (1 + η)LTi +

logN
η

= LTi + ηLTi︸︷︷︸
≤ηT

+
logN
η

= LTi +O
(√
LTi logN

)

.. Non-uniform prior

Theorem .. For any expert i, and an initial prior over experts p ∈ 4N

LTMA ≤
1

1− e−η

(
ηLTi + log

1
pi

)

. Hyperexperts

A hyper expert is a path through experts.

I := [N ]T = [N ]× [N ]× . . .× [N ]
i ∈ I is a hyper expert
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We define EWA variables on hyper experts as such:

`ti := `tit ,

wti := exp

−η t−1∑
s=1

`sis

 ,
vti :=

∑
i∈I :it=i

wti .

Apply the EWA bound to hyper experts:

LTMA ≤
1

1− e−η
(
ηLTi + T logN

)
.

This SUCKS! Scales linearly with T =⇒ we’re not learning.
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