EECS 598 : Prediction and Learning: It's Only a Game

Lecture 23: B.A.T Review and Calibrated Forecasting

Prof. Jacob Abernethy

Announcements

- One lecture remains.
- Project presentation coming soon.

23.1 Review of Blackwell Approachability

Given a biaffine function

$$
\begin{equation*}
r: X \times Y \rightarrow \mathbb{R}^{d} \tag{23.1}
\end{equation*}
$$

where X, Y are convex and $r(x, y)$ is the "payoff vector".
Denote S as some goal set, Blackwell Approachability states that
If $\forall y \in Y, \exists x \in X$ s.t. $r(x, y) \in S$, then there exists an adaptive strategy s.t.

$$
\begin{equation*}
\frac{1}{T} \sum_{t=1}^{T} r\left(x_{t}, y_{t}\right) \rightarrow S, \quad \forall y_{1}, \cdots y_{T} \tag{23.2}
\end{equation*}
$$

where x_{t} is computed via a strategy given $y_{1}, \cdots y_{t-1}$, i.e. $x_{t} \leftarrow f\left(y_{1}, \cdots y_{t-1}\right)$.
Last time we show that

- B.A.T \Rightarrow No external regret in "expert" setting
- B.A.T \Leftarrow No regret in OCO
- B.A.T \Leftrightarrow No internal regret in "expert" setting

We know that B.A.T \Rightarrow No regret for experts.Consider the following setting
For $t=1,2, \cdots T$

- player chooses $w^{t} \in \Delta_{n}$
- nature chooses $l^{t} \in[0,1]^{n}$

We want to guarantee that $\frac{1}{T}\left(\sum_{t} w^{t} l^{t}-\min _{i} \sum_{t} l_{i}^{t}\right)=\mathcal{O}(1)$.
Define the vector game $r(w, l)=\left\langle\left(w \cdot l-l_{1}, \cdots, w \cdot l-l_{n}\right)\right\rangle$, if $\frac{1}{T} \sum r\left(w^{t}, l^{t}\right) \rightarrow R^{n}$, we say there is no regret.
Question: $\forall l \in[0,1]^{n}, \exists w \in \Delta_{n}, r(w, l) \in R^{n}$, how to choose w ?
Answer:Choose $w(l)=e_{i^{*}}$, where $i^{*}=\arg \min _{i} l_{i}$.

23.2 Calibrated Forecasting

23.2.1 Forecast and ϵ Calibration

What does it mean to make correct forecast?
Repeats prediction for $t=1,2, \ldots$

- Forecaster says $p_{t} \in[0,1]$
- Nature reveals $y_{t} \in\{0,1\}$

Intuitively, what we would expect for $p_{1}, y_{1}, \cdots, p_{t}, y_{t}$ is

$$
\begin{equation*}
\left|\frac{1}{T} \sum p_{t}-\frac{1}{T} \sum y_{t}\right| \rightarrow 0 \tag{23.3}
\end{equation*}
$$

Eq 23.3 may be too easy to achieve. Now consider calibrated forecaster. We say a Forecaster id ϵ calibrated if
$\forall p \in[0,1]$, for large enough T

$$
\begin{equation*}
\left|\frac{\sum_{t=1}^{T} y_{t} \mathbf{1}\left[\left|p_{t}-p\right| \leq \epsilon\right]}{\sum_{t=1}^{T} \mathbf{1}\left[\left|p_{t}-p\right| \leq \epsilon\right]}-p\right|<c \epsilon \tag{23.4}
\end{equation*}
$$

for some $c>0$.
Problem with the definition above: What if the forecaster never predicts p ? We need to assume that $\liminf _{T \rightarrow \infty} \frac{\sum_{t=1}^{T} 1\left[\left\|p_{t}-p\right\| \leq \varepsilon\right]}{T}>0$.

23.2.2 L1-Calibration Score

Definition:Assume $\left[q_{1}, \cdots, q_{n}\right]$ is an ϵ discretization of $[0,1]$,

$$
\operatorname{L1CS}_{T}^{\epsilon}=\sum_{i=1}^{N}\left|\frac{1}{T} \sum_{t=1}^{T}\left(q_{i}-p_{t}\right) \mathbf{1}\left[\left|q_{i}-p_{t}\right| \leq \epsilon\right]\right|
$$

If $\forall \epsilon, \exists T_{0}: T>T_{0}, L 1 C S_{T}^{\epsilon} \leq c \epsilon$ is equivalent to the former definition about ϵ calibrated.

23.2.3 Calibration Against an Adversary

It is difficult to calibrate against an adversary. For example, if forecaster says $p_{t}>0.5$, adversary chooses $y_{t}=0$ and if forecaster says $p_{t} \leq 0.5$, adversary chooses $y_{t}=1$.
Solution: The forecaster must actually predict randomly!
Imagine that forecaster chooses $\sigma^{t} \in \Delta_{N}$ and $p_{t}=q_{I_{t}}$, where $I_{t} \sim \sigma^{t}$. Also, image adversary chooses $y_{t} \sim \alpha \in[0,1]$.
Define vector game $r(\sigma, \alpha)=\left\langle\left(q_{i}-\alpha\right) \sigma_{i}\right\rangle$ for $i=1, \cdots, N$. Towards using B.A.T., the average payoff is $\frac{1}{T} \sum_{t=1}^{T} r\left(\sigma^{t}, \alpha^{t}\right)=\left\langle\frac{1}{T} \sum_{t=1}^{T}\left(q_{i}-\alpha\right) \sigma_{i}^{t}\right\rangle=\mathbb{E}_{y_{t} \sim \alpha, p_{t} \sim \sigma^{t}}\left[\frac{1}{T} \sum_{t=1}^{T}\left(q_{i}-y^{t}\right) \mathbf{1}\left[p_{t}=q_{i}\right]\right]$
if the average payoff converges to $L 1$ ball of radius $c \epsilon$, the we are calibrated,

To show that ϵ-calibration \Leftrightarrow Approachability of $B_{1}(c \epsilon)$, first we need to check $\forall \alpha \in[0,1], \exists \sigma \in \Delta_{n}$, s.t.

$$
\begin{equation*}
\left\langle\left(q_{i}-\alpha\right) \sigma_{i}\right\rangle_{i=1, \ldots, n} \in B_{1}(c \epsilon) \tag{23.5}
\end{equation*}
$$

Set σ to put all weight on q_{i}^{*}, the nearest grid point to α,

$$
\begin{equation*}
\left\langle\left(q_{i}-\alpha\right) \sigma_{i}\right\rangle=\left\langle 0, \cdots,\left(q_{i}-\alpha\right) 1,0 \cdots, 0\right\rangle \in B_{1}(c \epsilon) \tag{23.6}
\end{equation*}
$$

we can approach $B_{1}(c \epsilon)$.
Sketch proof on reverse reduction: Calibration \Rightarrow B.A.T.
Given $r: X \times Y \rightarrow \mathbb{R}^{d}$, a convex set $S \subset \mathbb{R}^{d}$. Assume that $\forall y \in Y, \exists x \in X, r(x, y) \in S$ and we have a calibrated algorithm.
For $t=1,2, \cdots$

1. Player "guesses" opponent's cation $\hat{y}_{t} \in Y$. Let this be a "calibrated forecast" $x\left(\hat{y}_{t}\right)$
2. Player selects x_{t} s.t. $r\left(x_{t}, \hat{y}_{t}\right)$
3. Player observes true y_{t}

For the sake of the analysis, let $n_{T}^{i}:=\sum_{t=1}^{T} 1\left[\hat{y}_{t}=q_{i}\right]$, that is, the number of times the forecaster predicted that \hat{y}_{t} was the grid point q_{i}. Then we have

$$
\begin{aligned}
\frac{1}{T} \sum_{t=1}^{T} r\left(x_{t}, y_{t}\right) & =\sum_{i=1}^{N}\left(\frac{1}{T} \sum_{t=1}^{T} r\left(x_{t}, y_{t}\right) 1\left[\hat{y}_{t}=q_{i}\right]\right) \\
& =\sum_{i=1}^{N}\left(\frac{1}{T} \sum_{t=1}^{T} r\left(x\left(q_{i}\right), y_{t}\right) 1\left[\hat{y}_{t}=q_{i}\right]\right) \\
& =\sum_{i=1}^{N} r\left(x\left(q_{i}\right), \frac{1}{T} \sum_{t=1}^{T} y_{t} 1\left[\hat{y}_{t}=q_{i}\right]\right) \\
& =\sum_{i=1}^{N} r\left(x\left(q_{i}\right), \frac{n_{T}^{i}}{T}\left(q_{i}+\epsilon u_{i}\right)\right) \\
& =\left(\sum_{i=1}^{N} \frac{n_{T}^{i}}{T} r\left(x\left(q_{i}\right), q_{i}\right)\right)+\epsilon \bar{u}
\end{aligned}
$$

Notice that the first term in the final expression is an average of elements of S by construction, and the second term is a vector of norm $O(\epsilon)$. Hence the final vector is $O(\epsilon)$ close to S as desired..

