Announcements

- HW3 is due Nov 27 (next Wednesday)
- Work on projects!! (presentation after three weeks)

21.1 Bandit problem in stochastic shortest path (continue on the last lecture)

21.1.1 FTRL in the bandit setting

In every round,

\[x_t = \arg \min_{x \in K} \sum_{s=1}^{t-1} f_s \cdot x + \lambda R(x) \] \hfill (21.1)

From the last lecture, we can use estimated loss function. Therefore,

\[x_t = \arg \min_{x \in K} \sum_{s=1}^{t-1} \tilde{f}_s \cdot x + \lambda R(x) \] \hfill (21.2)

The regret bound becomes,

\[
\text{Regret}_T \leq \sum_{t=1}^{T} \lambda D_R(x_t, x_t + 1) + \lambda R(x^*) \\
\leq \sum_{t=1}^{T} \frac{||\tilde{f}_t||^2}{\lambda} + \lambda R(x^*) \\
\leq \frac{T \cdot G}{\lambda} + \lambda D \\
\leq 2\sqrt{T \cdot G \cdot D} \hfill (21.3)
\]

Problem: As \(x_t \) approaches the boundary, \(||\tilde{f}_t||_x \) grows very large. So above inequality breaks.

Solution: Use regularization with Self Concordance Function

21.1.2 Self Concordance Function

Classical Newton's method \(\text{Let our objective function be } g(x). \text{ we want to minimize} \)

\[
\min_{x \in D} g(x) \hfill (21.4)
\]
By adding self-concordance regularization term R,

$$\min_{x \in D} g(x) + \lambda R(x)$$ \hspace{1cm} (21.5)

The Newton’s update rule becomes

$$x_{t+1} \leftarrow x_t + (\nabla^2_x R)^{-1} \nabla \hat{g}(x_t)$$ \hspace{1cm} (21.6)

Therefore, x_{t+1} is in the ellipsoid centered on x_t.

$$x_{t+1} \in (\nabla^2_x R)\text{-ellipsoid}$$

Back to Bandit Optimization
Previously, our update rule was

$$x_t = \arg\min_{x \in K} \sum_{s=1}^{t-1} \tilde{f}_s \cdot x + \lambda R(x)$$ \hspace{1cm} (21.7)

We approximate f_t as eigenpoles of $\nabla^2_x R$-ellipsoid.

$$\tilde{f}_t \approx \lambda_j^{1/2} e_j$$ \hspace{1cm} (21.8)

where λ_j and e_j are eigenvalues and unit eigenvalues of $\nabla^2_x R$

![Figure 1: eigenpoles approximation](image)

Then, the new regret bound becomes

$$\text{Regret}_T \leq \sum_{t=1}^{T} \lambda D_R(x_t, x_t + 1) + \lambda R(x^*)$$

$$\leq \sum_{t=1}^{T} \frac{\tilde{f}_t^T (\nabla^2_x R) \tilde{f}_t}{\lambda} + \lambda R(x^*)$$ \hspace{1cm} (21.9)

$$\leq \frac{n \sqrt{\sigma_i} o_i^{-1} \sqrt{\sigma_i}}{\lambda} + \lambda D \theta \log T$$

$$\leq 2 \sqrt{n \cdot G \cdot D \cdot \theta \cdot T \log T}$$
However, this results are "in expectation" only, and only work against "oblivious adversaries". The general problem is still hard.

21.2 Blackwell Approachability

In standard 2-player o-sum game, the game matrix M satisfies

- $M \in [0, 1]^{n \times m}$,
- $M_{ij} \in \mathbb{R}$ is the payoff for P_1, when P_1 and P_2 play i and j respectively.

The minimax theorem is

$$\min_p \max_q p^T M q = \max_q \min_p p^T M q$$

or equivalently, (strong duality)

$$\forall p \exists q : p^T M q \geq c$$
$$\exists q \forall p : p^T M q \geq c$$

Generation Now, we want to generalize this to the case when $M_{ij} \in \mathbb{R}^d$.

Let $r(i, j)$ be the payoff vector for P_1,

$$r : \Delta_n \times \Delta_m \to \mathbb{R}^d$$

This is biaffine!

1. $r(\alpha p_1 + (1-\alpha)p_2, q) = \alpha r(p_1, q) + (1-\alpha)r(p_2, q)$
2. $r(p, \alpha q_1 + (1-\alpha)q_2) = \alpha r(p, q_1) + (1-\alpha)r(p, q_2)$

In this generalized version, we can define the minimax theorem by

$$\forall p \exists q : r(p, q) \in S$$
$$\exists q \forall p : r(p, q) \in S$$

S is a certain convex set applying some constraints. In general, this condition is not satisfied.

Example: A bad case

$$r(p, q) = (p, q)$$
$$S = \{(x, y) : x = y\}$$

$\forall p$, there exists $q = p$ such that $r(p, q) \in S$.
However, there is no q satisfying $\forall p : r(p, q) \in S$
21.2.1 Blackwell Approachability Theorem

If \(r, S, p, q \) satisfies
\[
\forall p, \exists q : r(p, q) \in S
\]
(21.13)

Then, \(\exists \) an adaptive strategy
\[
q_t \leftarrow f(p_1, p_2, ..., p_t)
\]
(21.14)
such that
\[
\frac{1}{T} \sum r(p_t, q_t) \rightarrow S
\]
(21.15)
or equivalently,
\[
dist\left(\frac{1}{T} \sum r(p_t, q_t), S\right) \rightarrow 0
\]
(21.16)

Example In above bad case example, one possible strategy for \(q \) is to choose previous \(p \).

\[
q_t \leftarrow p_{t-1}
\]
(21.17)

This strategy satisfies Blackwell Approachability theorem,
\[
dist\left(\frac{1}{T} \sum_{t=1}^{T} p_t, \frac{1}{T} \sum_{t=0}^{T-1} p_t\right) \rightarrow S
\]
(21.18)

where \(p_0 = q_1 \). (initial choice of \(q \))

21.2.2 Halfspace condition

\(\forall \) halfspaces \(H \supset S, \exists q \forall p \)
\[
r(p, q) \in H
\]
(21.19)

Lemma: The followings are equivalent

1. The halfspace condition
2. \(\forall \) halfspaces \(H \supset S, \forall p, \exists q: r(p, q) \in H \)
3. \(\forall p, \exists q: r(p, q) \in S \)
Proof:

1. 1 and 2 are equivalent
 Project \(r(p, q) \) into the normal of \(H \), and apply minimax theorem.

2. \(\exists H, \exists p_{bad}, \forall q \)
 \[r(p_{bad}, q) \notin H \]
 which implies \(r(p_{bad}, q) \notin S \) (contradiction)

3. \(\exists p_{bad}, \forall q: r(p_{bad}, q) \notin S \)
 \(\Rightarrow \exists \) hyperplane separating \(S \) and \(\{ r(p_{bad}, q) : q \in \Delta_m \} \), but this hyperplane violates 1.
 (contradiction)

![Figure 3: Separating Hyperplane](image-url)