EECS $_{59}$: Prediction and Learning: It's Only a Game	Fall 2013
Lecture 21: Bandit Algorithm / Blackwell Approachability	
Prof. Jacob Abernethy	Scribe: Tae Hyung Kim

Announcements

- HW_{3} is due Nov 27 (next Wednesday)
- Work on projects!! (presentation after three weeks)

21.1 Bandit problem in stochastic shortest path (continue on the last lecture)

21.1.1 FTRL in the bandit setting

In every round,

$$
\begin{equation*}
x_{t}=\arg \min _{x \in K} \sum_{s=1}^{t-1} f_{s} \cdot x+\lambda R(x) \tag{21.1}
\end{equation*}
$$

From the last lecture, we can use estimated loss function. Therefore,

$$
\begin{equation*}
x_{t}=\arg \min _{x \in K} \sum_{s=1}^{t-1} \tilde{f}_{s} \cdot x+\lambda R(x) \tag{21.2}
\end{equation*}
$$

The regret bound becomes,

$$
\begin{align*}
\operatorname{Regret}_{T} & \leq \sum_{t=1}^{T} \lambda D_{R}\left(x_{t}, x_{t}+1\right)+\lambda R\left(x^{\star}\right) \\
& \leq \sum_{t=1}^{T} \frac{\left\|\tilde{f}_{t}\right\|_{\star}^{2}}{\lambda}+\lambda R\left(x^{\star}\right) \tag{21.3}\\
& \leq \frac{T \cdot G}{\lambda}+\lambda D \\
& \leq 2 \sqrt{T \cdot G \cdot D}
\end{align*}
$$

Probelm As x_{t} approaches to the boundary, $\left\|\tilde{f}_{t}\right\|_{\star}^{2}$ grows very large. So above inequality breaks.

Solution: Use regularization with Self Concordance Function

21.1.2 Self Concordance Function

Classical Newton's method Let our objective function be $g(x)$. we want to minimize

$$
\begin{equation*}
\min _{x \in D} g(x) \tag{21.4}
\end{equation*}
$$

By adding self-concordance regularization term R,

$$
\begin{equation*}
\min _{x \in D} g(x)+\lambda R(x) \tag{21.5}
\end{equation*}
$$

The Newton's update rule becomes

$$
\begin{equation*}
x_{t+1} \leftarrow x_{t}+\left(\nabla_{x_{t}}^{2} R\right)^{-1} \nabla \hat{g}\left(x_{t}\right) \tag{21.6}
\end{equation*}
$$

Therefore, x_{t+1} is in the ellipsoid centered on x_{t}.

$$
x_{t+1} \in\left(\nabla_{x_{t}}^{2} R\right) \text {-ellipsoid }
$$

Back to Bandit Optimization Previously, our update rule was

$$
\begin{equation*}
x_{t}=\arg \min _{x \in K} \sum_{s=1}^{t-1} \tilde{f}_{s} \cdot x+\lambda R(x) \tag{21.7}
\end{equation*}
$$

We approximate f_{t} as eigenpoles of $\left(\nabla_{x_{t}}^{2} R\right)$-elliposid.

$$
\begin{equation*}
\tilde{f}_{t} \approx \lambda_{i}^{1 / 2} e_{i} \tag{21.8}
\end{equation*}
$$

where λ_{j} and e_{j} are eigenvalues and unit eigenvalues of $\nabla_{x_{t}}^{2} R$

Figure 1: eigenpols approximation
Then, the new regret bound becomes

$$
\begin{align*}
\operatorname{Regret}_{T} & \leq \sum_{t=1}^{T} \lambda D_{R}\left(x_{t}, x_{t}+1\right)+\lambda R\left(x^{\star}\right) \\
& \leq \sum_{t=1}^{T} \frac{\tilde{f}_{t}^{T}\left(\nabla_{x_{t}}^{-2} R\right) \tilde{f}^{T}}{\lambda}+\lambda R\left(x^{\star}\right) \tag{21.9}\\
& \leq \frac{n G \sqrt{\sigma_{i_{t}}} \sigma_{i_{t}}^{-1} \sqrt{\sigma_{i_{t}}}}{\lambda}+\lambda D \theta \log T \\
& \leq 2 \sqrt{n \cdot G \cdot D \cdot \theta \cdot T \log T}
\end{align*}
$$

However, this results are "in expectation" only, and only work against "oblivious adversaries". The general problem is still hard.

21.2 Blackwell Approachability

In standard 2-player o-sum game, the game matrix M satisfies

- $M \in[0,1]^{n \times m}$,
- $M_{i j} \in \mathbb{R}^{1}$ is the payoff for P_{1}, when P_{1} and P_{2} play i and j respectively.

The minimax theorem is

$$
\begin{equation*}
\min _{p} \max _{q} p^{T} M q=\max _{q} \min _{p} p^{T} M q \tag{21.10}
\end{equation*}
$$

or equivalently, (strong duality)

$$
\begin{align*}
& \forall p \exists q: p^{T} M q \geq c \\
& \exists q \forall p: p^{T} M q \geq c \tag{21.11}
\end{align*}
$$

Generation Now, we want to generalize this to the case when $M_{i j} \in \mathbb{R}^{d}$.
Let $r(i, j)$ be the payoff vector for P_{1},

$$
r: \Delta_{n} \times \Delta_{m} \rightarrow \mathbb{R}^{d}
$$

This is biaffine!

1. $r\left(\alpha p_{1}+(1-\alpha) p_{2}, q\right)=\alpha r\left(p_{1}, q\right)+(1-\alpha) r\left(p_{2}, q\right)$
2. $r\left(p, \alpha q_{1}+(1-\alpha) q_{2}\right)=\alpha r\left(p, q_{1}\right)+(1-\alpha) r\left(p, q_{2}\right)$

In this generalized version, we can define the minimax theorem by

$$
\begin{align*}
& \forall p \exists q: r(p, q) \in S \tag{21.12}\\
& \exists q \forall p: r(p, q) \in S
\end{align*}
$$

S is a certain convex set applying some constraints. In general, this condition is not satisfied.

Example: A bad case

$$
\begin{gathered}
r(p, q)=(p, q) \\
S=\{(x, y): x=y\}
\end{gathered}
$$

$\forall p$, there exists $q=p$ such that $r(p, q) \in S$.
However, there is no q satisfying $\forall p: r(p, q) \in S$

Figure 2: A bad case

21.2.1 Blackwell Approachability Theorem

If r, S, p, q satisfies

$$
\begin{equation*}
\forall p, \exists q: r(p, q) \in S \tag{21.13}
\end{equation*}
$$

Then, \exists an adaptive strategy

$$
\begin{equation*}
q_{t} \leftarrow f\left(p_{1}, p_{2}, \ldots, p_{t}\right) \tag{21.14}
\end{equation*}
$$

such that

$$
\begin{equation*}
\frac{1}{T} \sum r\left(p_{t}, q_{t}\right) \rightarrow S \tag{21.15}
\end{equation*}
$$

or equivalently,

$$
\begin{equation*}
\operatorname{dist}\left(\frac{1}{T} \sum r\left(p_{t}, q_{t}\right), S\right) \rightarrow 0 \tag{21.16}
\end{equation*}
$$

Example In above bad case example, one possible strategy for q is to choose previous p.

$$
\begin{equation*}
q_{t} \leftarrow p_{t-1} \tag{21.17}
\end{equation*}
$$

This strategy satisfies Blackwell Approachability theorem,

$$
\begin{equation*}
\operatorname{dist}\left(\frac{1}{T} \sum_{t=1}^{T} p_{t}, \frac{1}{T} \sum_{t=0}^{T-1} p_{t}\right) \rightarrow S \tag{21.18}
\end{equation*}
$$

where $p_{0}=q_{1}$. (initial choice of q$)$

21.2.2 Halfspace condition

\forall halfspaces $H \supset S, \exists q \forall p$

$$
\begin{equation*}
r(p, q) \in H \tag{21.19}
\end{equation*}
$$

Lemma: The followings are equivalent

1. The halfspace condition
2. \forall halfspaces $H \supset S, \forall p, \exists q: r(p, q) \in H$
3. $\forall p, \exists q: r(p, q) \in S$

Proof:

1. 1 and 2 are equivalent

Project $r(p, q)$ into the normal of H , and apply minimax theorem.
2. $3 \Rightarrow 2$

Assume $\exists H, \exists p_{\text {bad }}, \forall q$

$$
r\left(p_{\text {bad }}, q\right) \notin H
$$

which implies $r\left(p_{b a d}, q\right) \notin S$ (contradiction)
3. $1 \Rightarrow 3$

If $\exists p_{\text {bad }}, \forall q: r\left(p_{b a d}, q\right) \notin S$
$\Rightarrow \exists$ hyperplane separating S and $\left\{r\left(p_{\text {bad }}, q\right): q \in \Delta_{m}\right\}$, but this hyperplane violates 1 . (contradiction)

Figure 3: Separating Hyperplane

