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Announcements

• None

. EWA with ε-exploration (recap)

This algorithm generates an unbiased estimator for lt.

Strategy With probability 1− ε

• Choose pt = EWA(l̃
1
, ..., l̃

t−1
) and let l̃

t
= ~0

With probability ε

• Choose pt = 〈1
n , ...,

1
n〉, sample It ∼ pt, and let l̃

t
= 〈0, ...,0, nε l

t
It
,0...,0〉 = n

ε l
t
It
eIt (eIt is the Itth unit

vector).

Proof that this algorithm works

E[l̃
t
] = (1− ε)~0 + ε

 n∑
i=1

pti

(n
ε
lti ei

) =
n∑
i=1

lti ei = lt

Naive expected regret bound

O

(
εT +

n2T η

ε2 +
logn
η

)
=O

(
T

3
4
√
n(logn)

1
4
)

(with tuning)

Better expected regret bound

O

(
εT +

nT η

ε
+

logn
η

)
=O

(
T

2
3
√
n
)

(with tuning)

Question from last lecture: Is there some algorithm that is better than EWA with ε-exploration?
In particular, is it possible to reduce the power on T to 1

2 in the expected regret?
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. EXP

We claim that the EXP algorithm is a better algorithm than EWA with ε-exploration, and, in fact,
has an expected regret bound of

√
2T n logn. Let us begin by stating the algorithm.

.. Algorithm

Let L̃t be the cumulative losses up to period t.
for t=,...,T do

Sample It ∼ pt

Observe ltIt

Set l̃
t

=
〈
0, ...,0,

ltIt
ptIt
,0...,0

〉
Set L̃t = L̃t−1 + l̃

t

for i=,...,n do

Set pt+1
i =

e−ηL̃
t
i

n∑
j=1

e−ηL̃
t
i

end for
end for

.. Comments on EXP

The EXP algorithm looks very similar to that of EWA with ε-exploration. Indeed in both cases,
the chosen loss vectors are divided by the probability of obtaining that vector. The key difference
between the algorithms is that EXP does not drop observations in any round (as opposed to EWA
with ε-exploration dropping observations with a probability of 1− ε).

Intuitively, it seems that EXP might be a pretty bad algorithm, given that pti ’s could get expo-
nentially small, meaning that we could be dividing by a very small number in the algorithm.
However, this works out in the end, as we will see in the analysis of the expected regret.

.. Analysis of the expected regret for EXP

We analyze the regret of EXP by looking at the potential function

Φt = −1
η

log

 n∑
i=1

e−ηL̃
t−1
i


and taking the expected increase in potential in every period.

The increase in potential from period t to t + 1 is

Φt+1 −Φt = −1
η

log

 ∑n
i=1 e

−ηL̃ti∑n
i=1 e

−ηL̃t−1
i

 = −1
η

log

∑n
i=1 e

−ηL̃t−1
i −ηl̃

t
i∑n

i=1 e
−ηL̃t−1

i

 = −1
η

log
(
Ei∼pt

[
e−ηl̃

t
i

])
To proceed, we need the following lemma.
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Lemma .. For all x ≥ 0,

e−x ≤ 1− x+
1
2
x2

You can see this by plotting the two graphs e−x and 1 − x + 1
2x

2. The blue line is e−x and the red
line is 1− x+ 1

2x
2 in the plot below.
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Using the lemma, we get

Φt+1 −Φt ≥ −
1
η

log
(
Ei∼pt

[
1− ηl̃ti +

1
2
η2(l̃ti )

2
])

= −1
η

log
(
1−Ei∼pt

[
ηl̃ti +

1
2
η2(l̃ti )

2
])

≥ 1
η
Ei∼pt

[
ηl̃ti +

1
2
η2(l̃ti )

2
]

(because log(1− x) ≤ −x)

=
n∑
i=1

pti l̃
t
i −

η

2

n∑
i=1

pti (l̃
t
i )

2

Taking the expectation on both sides,

E[Φt+1 −Φt] ≥ E

 n∑
i=1

pti l̃
t
i −

η

2

n∑
i=1

pti (l̃
t
i )

2


=

n∑
i=1

pti l
t
i −

η

2
E

ptIt
 ltItptIt

2
= pt · lt −

η

2
E

 (ltIt )
2

ptIt


= pt · lt −

η

2

n∑
i=1

(lti )
2

≥ pt · lt −
ηn

2
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Now, we sum the differences in potential to get

E[ΦT+1 −Φ1] = E

 T∑
t=1

(Φt+1 −Φt)

 ≥ T∑
t=1

pt · lt −
T ηn

2

Furthermore,

E[ΦT+1 −Φ1] ≤ E

[
L̃Ti∗ −

(
−1
η

logn
)]

= LTi∗ +
1
η

logn

Combining the two inequalities, we get

E-regretT (EXP 3) =
T∑
t=1

pt · lt −LTi∗ ≤
1
η

logn+
T ηn

2
− (∗)

Theorem ..
E-regretT (EXP 3) ≤

√
2T n logn

Proof. Tune η =
√

2logn
T n in (∗).

. Bandit problem in stochastic shortest path setting (in-class slide presentation)

Problem Want to find the shortest path from source to sink in a network with stochastic costs.
Only flow costs on the selected path are known at the end of a period (bandit setting).

Flows ⇔ paths The number of paths is exponential, so we would want to work with flow so-
lutions instead of arc solutions. It is easily seen that a path solution can be reduced to a flow
solution.

Flow solution

Path solutionsFlow polytope

Conversely, assuming that the decision maker can choose paths with some distribution, it can be
shown that a flow solution is equivalent to some convex combination of path solutions.
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FTRL in the bandit setting In every round,

xt = argmin
x∈K

t−1∑
s=1

fs · x+λR(x)

Can we use estimated loss functions instead? i.e.

xt = argmin
x∈K

t−1∑
s=1

f̃s · x+λR(x)

As it turns out, yes! Due of the convexity of regret in f ′t s,

E[Regret(f̃1, ..., f̃T )] ≥ Regret(E[f̃1], ...,E[f̃T ])
= Regret(f1, ..., fT )

It is sufficient to compete with an unbiased estimate of the loss functions (instead of the actual
loss functions).
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