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Announcements

• None

. EWA with ε-exploration (recap)

This algorithm generates an unbiased estimator for lt.

Strategy With probability 1− ε

• Choose pt = EWA(l̃
1
, ..., l̃

t−1
) and let l̃

t
= ~0

With probability ε

• Choose pt = 〈1
n , ...,

1
n〉, sample It ∼ pt, and let l̃

t
= 〈0, ...,0, nε l

t
It
,0...,0〉 = n

ε l
t
It
eIt (eIt is the Itth unit

vector).

Proof that this algorithm works

E[l̃
t
] = (1− ε)~0 + ε

 n∑
i=1

pti

(n
ε
lti ei

) =
n∑
i=1

lti ei = lt

Naive expected regret bound

O

(
εT +

n2T η

ε2 +
logn
η

)
=O

(
T

3
4
√
n(logn)

1
4
)

(with tuning)

Better expected regret bound

O

(
εT +

nT η

ε
+

logn
η

)
=O

(
T

2
3
√
n
)

(with tuning)

Question from last lecture: Is there some algorithm that is better than EWA with ε-exploration?
In particular, is it possible to reduce the power on T to 1

2 in the expected regret?
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. EXP

We claim that the EXP algorithm is a better algorithm than EWA with ε-exploration, and, in fact,
has an expected regret bound of

√
2T n logn. Let us begin by stating the algorithm.

.. Algorithm

Let L̃t be the cumulative losses up to period t.
for t=,...,T do

Sample It ∼ pt

Observe ltIt

Set l̃
t

=
〈
0, ...,0,

ltIt
ptIt
,0...,0

〉
Set L̃t = L̃t−1 + l̃

t

for i=,...,n do

Set pt+1
i =

e−ηL̃
t
i

n∑
j=1

e−ηL̃
t
i

end for
end for

.. Comments on EXP

The EXP algorithm looks very similar to that of EWA with ε-exploration. Indeed in both cases,
the chosen loss vectors are divided by the probability of obtaining that vector. The key difference
between the algorithms is that EXP does not drop observations in any round (as opposed to EWA
with ε-exploration dropping observations with a probability of 1− ε).

Intuitively, it seems that EXP might be a pretty bad algorithm, given that pti ’s could get expo-
nentially small, meaning that we could be dividing by a very small number in the algorithm.
However, this works out in the end, as we will see in the analysis of the expected regret.

.. Analysis of the expected regret for EXP

We analyze the regret of EXP by looking at the potential function

Φt = −1
η

log

 n∑
i=1

e−ηL̃
t−1
i


and taking the expected increase in potential in every period.

The increase in potential from period t to t + 1 is

Φt+1 −Φt = −1
η

log

 ∑n
i=1 e

−ηL̃ti∑n
i=1 e

−ηL̃t−1
i

 = −1
η

log

∑n
i=1 e

−ηL̃t−1
i −ηl̃

t
i∑n

i=1 e
−ηL̃t−1

i

 = −1
η

log
(
Ei∼pt

[
e−ηl̃

t
i

])
To proceed, we need the following lemma.
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Lemma .. For all x ≥ 0,

e−x ≤ 1− x+
1
2
x2

You can see this by plotting the two graphs e−x and 1 − x + 1
2x

2. The blue line is e−x and the red
line is 1− x+ 1

2x
2 in the plot below.
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Using the lemma, we get

Φt+1 −Φt ≥ −
1
η

log
(
Ei∼pt

[
1− ηl̃ti +

1
2
η2(l̃ti )

2
])

= −1
η

log
(
1−Ei∼pt

[
ηl̃ti +

1
2
η2(l̃ti )

2
])

≥ 1
η
Ei∼pt

[
ηl̃ti +

1
2
η2(l̃ti )

2
]

(because log(1− x) ≤ −x)

=
n∑
i=1

pti l̃
t
i −

η

2

n∑
i=1

pti (l̃
t
i )

2

Taking the expectation on both sides,

E[Φt+1 −Φt] ≥ E

 n∑
i=1

pti l̃
t
i −

η

2

n∑
i=1

pti (l̃
t
i )

2


=

n∑
i=1

pti l
t
i −

η

2
E

ptIt
 ltItptIt

2
= pt · lt −

η

2
E

 (ltIt )
2

ptIt


= pt · lt −

η

2

n∑
i=1

(lti )
2

≥ pt · lt −
ηn

2
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Now, we sum the differences in potential to get

E[ΦT+1 −Φ1] = E

 T∑
t=1

(Φt+1 −Φt)

 ≥ T∑
t=1

pt · lt −
T ηn

2

Furthermore,

E[ΦT+1 −Φ1] ≤ E

[
L̃Ti∗ −

(
−1
η

logn
)]

= LTi∗ +
1
η

logn

Combining the two inequalities, we get

E-regretT (EXP 3) =
T∑
t=1

pt · lt −LTi∗ ≤
1
η

logn+
T ηn

2
− (∗)

Theorem ..
E-regretT (EXP 3) ≤

√
2T n logn

Proof. Tune η =
√

2logn
T n in (∗).

. Bandit problem in stochastic shortest path setting (in-class slide presentation)

Problem Want to find the shortest path from source to sink in a network with stochastic costs.
Only flow costs on the selected path are known at the end of a period (bandit setting).

Flows ⇔ paths The number of paths is exponential, so we would want to work with flow so-
lutions instead of arc solutions. It is easily seen that a path solution can be reduced to a flow
solution.

Flow solution

Path solutionsFlow polytope

Conversely, assuming that the decision maker can choose paths with some distribution, it can be
shown that a flow solution is equivalent to some convex combination of path solutions.
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FTRL in the bandit setting In every round,

xt = argmin
x∈K

t−1∑
s=1

fs · x+λR(x)

Can we use estimated loss functions instead? i.e.

xt = argmin
x∈K

t−1∑
s=1

f̃s · x+λR(x)

As it turns out, yes! Due of the convexity of regret in f ′t s,

E[Regret(f̃1, ..., f̃T )] ≥ Regret(E[f̃1], ...,E[f̃T ])
= Regret(f1, ..., fT )

It is sufficient to compete with an unbiased estimate of the loss functions (instead of the actual
loss functions).
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