
EECS 598-006: Prediction, Learning and Games Fall 2013

Lecture 1: Course Overview and Intro to Online Learning
Lecturer: Jacob Abernethy Scribes: Wendy Shang

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications.

1.1 Course Structure

• 3 or 4 Problem sets (35%).

• Final project with final report or literature review (50%).

• Participation, such as scribing, answering questions proposed during lectures, etc (15%).

1.2 Overview of Core Materials

1.2.1 Time Line

A Brief History of “No-regret” Learning

Early Online Learning

Hannan 1956 Sequential “Learning” without Stochastic Process
Blackwell 1957 Generalization of Minimax Theorem: “reduction” from Hannan’s result.

Rosenblatt (1957) The Perceptron
· · · (Big time gap) · · ·
More modern results

Littlestone/Warmuth 1992 Weighted Majority Algorithm
Zinkevich 2003 Online Convex Optimization

Kalai/Vempala 2006 Follow the Perturbed Leader
etc. (lots more) · · ·

1.2.2 Connections

Here’s a list of some major areas of research where strong connections have been found to the online no-regret
framework that we’ll be discussing in this course:

• Boosting/Adaboost: originated from the Weighted Majority Algorithm

• Computing Nash Equilibrium
− Zero Sum Games

• Comparing Correlation Equation

• Optimization
− Convergence rates for Stochastic Gradient Descent

• Finance

1-1

Lecture 1: Course Overview and Intro to Online Learning 1-2

– “Universal” Portfolio

– Black-Scholes Option Pricing

• “Calibrated” Forecasting

• Prediction Market Mechanism

• Differential Privacy Mechanics

1.3 “Prediction with Expert Advice”

1.3.1 Problem Statement

1. There is a sequence of rounds. For each round, there is an “outcome”.
For simplicity, our “outcome” is either 1 or 0.
For example: y1 = 0, y2 = 1, y3 = 1, · · · , and for any positive integer t, yt ∈ {0, 1}.
Such binary representation may reflect real life events, for example: rain/shine, price going up/price
going down.

2. In addition to the rounds, we also have a pool of N “experts”.
On round t, the “advice” of the ith expert is denoted as fi,t ∈ {0, 1}.
For example, suppose that the 7th expert claims that the 5th round outcome is 1, then we denote it
as f7,5 = 1.

3. We want to design a Master Algorithm, combining the experts’ advice, to predict the outcomes. We
denote the prediction for the tth round outcome as ŷt ∈ {0, 1}.

4. Further, we have a formula to express the number of mistakes of the Master Algorithm up to round T :

MistakeT (MA) =

T∑
t=1

1[ŷt 6= yt]

where 1[ŷt 6= yt] is the indicator function1.

1.3.2 Design a Good Master Algorithm

Our next question is how to design a good master algorithm, especially given historical performances of the
experts. How should we combine the advice of the experts to make our own prediction?

We will assume we are in the “realizable” setting. That is, we will assume that there exist a perfect
expert who guesses every round’s outcome correctly. Then we can use Halving Algorithm, which we now
present.

1.3.2.1 Introduction to Halving Algorithm

Heuristically, suppose we are at the tth round, :

1. Maintain the “good” experts, that is, who predict the outcomes correctly up to the tth round.

2. To form a prediction on round t, take a majority vote of the “good” experts!

1The indicator function is defined as 1[statement] =

{
1 if statement true;

0 if statement false
.

Lecture 1: Course Overview and Intro to Online Learning 1-3

Symbolically, denote Ct as the set of the consistently good experts up till the tth round. We start with 1st
round and we have C1 := [N]. 2 At the tth round, we can inductively define

Ct+1 = Ct\{i ∈ Ct : fi,t 6= yt}.

Then we use master algorithm to predict the t+ 1 round outcome 3

ŷt =

{
1 if |{i ∈ Ct : fi,t = 1}| ≥ |Ct|

2

0 if |{i ∈ Ct : fi,t = 0}| > |Ct|
2

1.3.2.2 Upper Bound for MistakeT (Halving)

Theorem 1.1 Suppose among the N experts, there exists a perfect expert. For a sequence of T rounds, the
total number of mistakes made during Halving Algorithm is bounded by

MistakeT (Halving) ≤ log2N

Proof: We have |C1| = N . And by the assumption that there is always at least one perfect expert, |CT | ≥ 1.
By the nature of Halving Algorithm, if ŷt 6= yt, then |Ct+1| ≤ 1

2 |Ct|. Together we have

1 ≤ |CT | ≤ |C1|
(

1

2

)MistakeT (Halving)

= N

(
1

2

)MistakeT (Halving)

=⇒ N ≥ 2MistakeT (Halving)

=⇒ MistakeT (Halving) ≤ log2N.

In addition, the upper bound is sharp. To see this, imagine we have N = 2n experts, only one of them is
perfect, and for each round t, half of them vote 1, the other half 0, till the only one left is the perfect expert.
And the correct outcome is always 0, then Halving algorithm makes exactly log2N mistakes.

Here is an exercise:
Exercise: Suppose the all assumptions in Theorem 1.1 still hold except that now there exists at least

K perfect experts. Now show that MistakeT (Halving) ≤ log2(NK).

1.3.2.3 Predict Sorting K teams

Here is another example where we can apply Halving Algorithm.

Problem Statement: There areK teams, we denote them as 1, 2, 3, · · ·K. We observe pairs (i1, ji), (i2, j2), · · · (iT , jT).
Suppose that ∃ an unknown ranking of the teams, represented by π∗ ∈ Sk 4. The algorithm must predict
the outcome, where

yt =

{
1 if π∗(it) > π∗(jt)

0 if otherwise

We may reduce this problem to a Halving problem. The “experts” are all the elements, π’s, in Sk, that is,
all the possible permutations. Thus there are |Sk| = K! of them. And

Cτ = {π ∈ Sk : π and π∗ agree on it VS jt,∀t ∈ [τ − 1]}.
2[N] = {1, 2, · · ·N}.
3For a set A, |A| is the cardinality of A.
4Sk is the symmetric group on [k], which consists of all the possible permutations of [k]

Lecture 1: Course Overview and Intro to Online Learning 1-4

By Theorem 1.1, we know that MistakeT ≤ log2K! = O(K log2K). Note that the complexity is the same
as the binary tree sorting algorithm.

Here is a challenge:
Challenge: The naive way to implement the above algorithm is to list out all permutations and, after

observing the outcome on each round, to simply delete the permutations that are inconsistent with this
outcome. This would require O(K!) computation on every round. But perhaps there’s an easier way? I
am not entirely sure about the answer to this, so I pose the following question: Is there an efficient method
to apply the halving algorithm to this predictive sorting problem? Ideally the algorithm would run in time
polynomial in K and T .

