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Announcements

• There is no class on Wednesday, November 

• Good job on project proposals so far!

. Review on stochastic multi-armed bandit problem

Consider a gambler playing against a N−armed slot machine and sequentially pulls up arms to
minimize the expected regret. Each arm, i ∈ {1, . . . ,N } has a probability distribution Di supported
on the closed interval [0,1]. Let µi be the expected value of the corresponding loss to arm i and
define Ĩ = argmin1≤j≤N µj as the index of the optimal expected value among arms. Suppose that
the gambler selects arm It at round t, then the expected regret of the gambler up to round T is
defined as

E− regret = E

 T∑
t=1

(
XIt ,t −XĨ ,t

)
where Xi,t ∼ Di denotes the loss associated with choosing arm i at round t. It’s worthwhile to
mention that the expected value is taken over the distributions {Di}Ni=1 and the randomness of
choosing arms.

. Analysis of greedy algorithm

This section is devoted to state and prove the theorem regarding the upper bound on the expected
regret of the greedy algorithm. The greedy algorithm is introduced in the last lecture.

Theorem .. Suppose that there exists a positive scalar ∆ such that µj −µĨ ≥ ∆ for any j , Ĩ . Then
the expected regret of the greedy algorithm has the following upper bound

E− regret ≤ 1 +
2N log(2NT )

∆2

Proof. Let us to decompose the expected regret as sum of two terms in which the first term is
the associated regret to the sampling phase and the second term corresponds to the exploitation
phase.
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E− regret = E

mN∑
t=1

(
XIt ,t −XĨ ,t

)+E

 T∑
t=1+mN

(
XIt ,t −XĨ ,t

) (a)
≤ Nm+E

mN∑
t=1

(
XIt ,t −XĨ ,t

)
(b)
≤ Nm+E

mN∑
t=1

IIt,Ĩ

 =Nm+
T∑

t=1+mN

P

(
It , Ĩ

)
≤Nm+ T max

1+Nm≤t≤T
P

(
It , Ĩ

)
(.)

Note that inequalities (a) and (b) are immediate consequence of the fact that Xk,t ∈ [0,1] for all
1 ≤ k ≤ N and 1 ≤ t ≤ T . Therefore, in order to complete the proof, we need to control the
deterministic term P

(
It , Ĩ

)
uniformly from above. If It , Ĩ then µ̂It ≤ µ̂Ĩ , hence using some

straightforward algebraic manipulation we obtain

∆ ≤ µIt −µĨ =
(
µIt − µ̂It

)
+
(
µ̂It − µ̂Ĩ

)
+ (µ̂Ĩ −µĨ ) ≤

∣∣∣µIt − µ̂It ∣∣∣+ 0 +
∣∣∣µ̂Ĩ −µĨ ∣∣∣ ≤ 2 max

1≤j≤N

∣∣∣µj − µ̂j ∣∣∣
In other words, P

(
It , Ĩ

)
≤ P

(
max1≤j≤N

∣∣∣µj − µ̂j ∣∣∣ ≥ ∆
2

)
for any t. Combination of union bound

(inequality (a)) and Hoeffding’s inequality ( used to prove inequality (b)) give us the desired upper
bound.

η = max
1+Nm≤t≤T

P

(
It , Ĩ

)
≤ P

(
max

1≤j≤N

∣∣∣µj − µ̂j ∣∣∣ ≥ ∆

2

) (a)
≤ N max

1≤j≤N
P

(∣∣∣µj − µ̂j ∣∣∣ ≥ ∆

2

)
(b)
≤ 2N exp

(
m∆2

2

)
(.)

Letting the optional parameter m = 2
∆2 log

(
2N
η

)
and substituting inequality (.) into inequality

(.) yield

E− regret ≤Nm+ T η =
2N
∆2 log

(
2N
η

)
+ T η

Choosing η = 1
T terminates the proof.

Note that the reason that ∆2 appeared in the denumerator of the expected regret is that the in-

equality E

(
mN∑
t=1

(
XIt ,t −XĨ ,t

))
≤Nm is not tight enough.

Lemma . (Hoeffding’s inequality). Let Z1, . . . ,Zn are independent and identically distributed ran-
dom variables such that Z1 ∈ [0,1] almost sure and E (Z1) = µ. Then,

P


∣∣∣∣∣∣∣∣1n

n∑
j=1

Zi −µ

∣∣∣∣∣∣∣∣ ≥ ε
 ≤ 2exp

(
−2nε2

)
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. Upper Confidence Bound (UCB) algorithm

In order to introduce UCB algorithm let us to introduce some notation. Define, Tj (t)B
t∑
s=1

I(Is=j) as

the number of times that the gambler played the arm j up to time t and let the empirical expected
regret of arm j as the following

µ̂j,t =
1∣∣∣Tj (t)

∣∣∣
t∑
s=1

Xj,sI(Is=j) (.)

Algorithm . UCB algorithm to solve multi armed bandit problem
Initialization Play each arm once
For t = 1 to T

For j = 1 to N
Update µ̂j,t according to the identity (.)

end

Play the arm It = argmin1≤j≤N

(
µ̂j,t −

√
3log t
|Tj (t)|

)
end

The arm selection criterion of UCB algorithm encourages to choose the rarely chosen arms. The
next theorem characterizes the upper bound on the expected regret of UCB algorithm. The inter-
ested reader is referred to [] for further details and proof of Theorem ..

Theorem .. Let ∆j = µj − µĨ such that ∆j > 0 for any j , Ĩ . Then the expected regret of UCB
algorithm can be upper bounded by the following inequality.

E− regret ≤ O

∑
j,Ĩ

logT
∆j


Theorem . shows that the expected regret of UCB algorithm is far better than greedy method
for small ∆j ’s. Strictly speaking, if ∆min = minj,Ĩ ∆j , then

E− regret ≤ O
(
N logT
∆min

)

. Adversarial Bandit

Unlike the multi armed bandit setting where the loss of each action has a stationary distribution
over time, in the adversarial bandit problem there is no statistical assumption about the form of
the generating process of losses. In this new formulation, the associated regret to each arm is
determined at each round by an adversary and the player only knows the reward of previously
chosen actions. The only assumption about the loss vector is that, `t ∈ [0,1]N for each round t.
Since the adversary can assign low reward to the previously selected actions and high rewards
to the unseen arms, hence, a deterministic policy of arm selection can not optimize the expected
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regret function. Finally, we need to mention that the distribution of action It only depends on the

loss of previous actions,
{
`sIs

}t−1

s=1
.

Due to the lack of full information about the associated losses of choosing arms, the player can’t
run exponential weighted algorithm to optimize the regret function. One doubtful solution is to
estimate of loss vector, `t, based on the observation of a single component `tIt . Taking advantage
of the conditional expectation property, we can show that if l̃t is an unbiased estimator of `t, i.e.
E

(
˜̀t |Ft−1

)
= `t where Ft−1 is the generated σ−field by observations up to round t − 1, then the

expected regrets with respect to `t and ˜̀t are the same.

E

 T∑
t=1

˜̀t .
(
pt − p∗

) = E

E
 T∑
t=1

˜̀t .
(
pt − p∗

)
|Ft−1


 = E

 T∑
t=1

E

(
˜̀t |Ft−1

)
.
(
pt − p∗

) = E

 T∑
t=1

`t .
(
pt − p∗

)
.. Unbiased estimation of `t

We claim that the following procedure which is called exponential weighted algorithm with ε−exploration
generates an unbiased estimator of `t.

. With probability ε, choose pt = 1
N 〈1, . . . ,1〉 and select It ∼ pt (uniformly at random). Let

˜̀t = 〈0, . . . ,0, N`
t
It
ε ,0, . . . ,0〉.

. With probability 1−ε choose pt by exponential weighted algorithm on the loss vectors { ˜̀s}t−1
s=1

and let ˜̀t = 0.

proof of claim.

E

(
˜̀t
)

= (1− ε) .0 + ε
N∑
j=1

1
N
〈0, . . . ,0,

N`tj
ε
,0, . . . ,0〉 = `t

Since ˜̀t is an unbiased estimator of `t, so at the first glance, it seems that the expected regret
of above algorithm is exactly equal to the expected regret of EWA. However, a contingent reader
notices that ˜̀t is no longer in the closed cube [0,1]N . Recalling the proof of Theorem .. in the
lecture notes, one can easily show that

E−regret of EWA with ε exploration ≤ T ε+(1− ε)

 logN
η

+ η
T∑
t=1

‖ ˜̀t ‖2∞

 = O
(
T ε+

logN
η

+ ηT
N2

ε2

)

Now choosing the regularization parameters ε2 = N
T

√
2T logN and η = ε

N

√
2logN
T , the optimal

upper bound is given by

E− regret of EWA with ε exploration ≤ O
(√
NT

3
4 (logN )

1
4

)
(.)
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It’s worthwhile to mention that although max1≤t≤T ‖ ˜̀t ‖∞ ≤ N
ε , but most of the times (with prob-

ability 1ε), we have ˜̀t = 0 ∈ [0,1]. Hence, the proof can be slightly modified in a smart way to
obtain the following upper bound.

E− regret of EWA with ε exploration ≤ O
(
T ε+

logN
η

+ ηT
N2

ε

)

which leads to E− regret of EWA with ε exploration ≤ O
(√
NT

2
3

)
.

Question: Is there any algorithm with the expected regret O
(√
NT

)
? Yes! EXP algorithm

. EXP Algorithm

Let L̃t be the cumulative loss up to round t.

Algorithm . EXP algorithm to for adversarial multi-armed bandit problem
Input Regularization parameter η
Initialization St initial value for p1

For t = 1 to T
For j = 1 to N

Sample It absed on the distribution pt

Observe `tIt
Let ˜̀t = 〈0, . . . ,0, `

t
It

ptIt
,0, . . . ,0〉

Update pt+1 by pt+1
j =

exp
(
−ηL̃tj

)
N∑
j=1

exp
(
−ηL̃tj

)
end

The EXP algorithm will be analyzed in the next class.
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