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Announcements

• Sign up sheet for project discussion.

• HW presentation coming up.

. Generic Bound of FTRL

.. Notation Switch

We will use ft(x) instead of lt(x) as the loss suffered in each round to avoid confusion with loss
vectors. For example, in expert setting, we have ft(x) = lt · x; in portfolios,ft(x) = −log(bt · x).

.. Analysis on Generic Bound of FTRL

In FTRL,

xt = arg minx∈X

t−1∑
s=1

fs(x) +
1
η
R(x) (.)

The generic bound is

∑
ft(xt)−minx

∑
ft(x) ≤ 1

η
(R(u)−R(x1)) +

T∑
t=1

(ft(xt)− ft(xt+1)) (.)

The first term is a constant, to evaluate the generic bounds the second term needs to be studied.

By convexity,
ft(xt)− ft(xt+1) ≤ ∇ft(xt)(xt − xt+1) (*)

This is a variant of the standard definition of convexity,

f (x)− f (y) ≥ ∇f (y)(x − y) (.)

We perform three different analysis on (*)

(a) By Cauchy-Schwartz inequality,

(*) ≤ ‖∇ft(xt)‖2‖xt − xt+1‖2 (.)

When the regularized function is chosen as

R(x) =
1
2
‖x1 − x‖22 (.)
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we have
xt+1 ≈ xt − η∇ft(xt)⇒ ‖xt − xt+1‖2 ≤ ‖η∇ft(xt)‖2 (.)

thus
(*) ≤ η‖∇ft(xt)‖22 (.)

When ‖∇ft(xt)‖22 is bounded,
ft(xt)− ft(xt+1) = O(η) (.)

Therefore
Regret = O(

1
η

+ T η) (.)

(b) By Hölder’s inequality,
(*) ≤ ‖∇ft(xt)‖p‖xt+1 − xt‖q (.)

where 1
p + 1

q = 1, ‖v‖p is defined as ‖v‖p = (
∑
|vi |p)1/p

For expert setting, R(x) =
∑
i xi logxi . Let p =∞,q = 1

‖∇ft(xt)‖∞ = ‖lt‖∞ = O(1) (.)

As xit+1 = xitexp(−ηlit ) (normalization term omitted for convenience)

‖xt − xt+1‖1 ≈
∑
i

xit(1− exp(−ηlit )) ≤ η
∑
i

xitl
i
t ≤ η (.)

The first inequality follows 1− e−x ≤ x and the second inequality holds as xt ∈ 4n and lt ∈ [0,1]n

(c) In general, the most generic bound is given as

RegretT ≤
1
η

(
(R(u)−R(x1)) +

T∑
t=1

DR(xt ,xt+1)
)

(.)

Bregman Divergence DR in (.) stands for Bregman Divergence.

Definition Given any convex function f , the Bregman Divergence of f is defined as

Df (x,y) = f (x)− f (y)−∇f (y)(x − y) (.)

Bregman Divergence actually measures the "gap" in linear approximation, as illustrated in Fig.

Property Bregman Divergence has the following properties

. Df (x,y) ,Df (y,x).

Equality is only true when f is quadratic, i.e.Df (x,y) = (x − y)T∇2f (x − y)(x − y)

. ∀x,y,Df (x,y) ≥ 0, assuming f is convex

. Df (x,y) = 0, iff x = y. Holds when f is strictly convex

. Quadratic approx of Bregman Divergence: if x is "close" to y,Df (x,y) ≈ (x−y)T∇2f (x−y)(x−y)
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Figure : Bregman Divergence

. Applications

.. Convex Optimization

In this application, we want to solve non-online online convex optimization problem, A.K.A Con-
vex Optimization:

minxG(x), where G is a convex function

This problem can be reduced to OCO (Online Convex Opitimization),i.e. select a sequence of xt’s
online.

Define ft(x) = ∇G(xt)(x − xt) +G(xt), we have the following observation

Observation .. By definition, ft(xt) = G(xt)

Observation .. By convexity, ft(x) ≤ G(x)

Let εT be a bound on RegretT
T , we would like to evaluate how "optimized" is 1

T

∑T
t=1 xt =: xT .

Denote x∗ as the minimizer of G,by Jenson’s Inequality

G(xT ) ≤ 1
T

∑
G(xt)

=
1
T

∑
ft(xt)

≤ 1
T

∑
ft(x

∗) + εT

≤ 1
T

∑
G(x∗) + εT

= G(x∗) + εT (.)

Notice:Maybe we do not want to apply FTRL to select xt as it requires solving a minimization
problem each round.

Instead,we may apply Online Gradient Descent(OGD) which requires O(dim) calculations each
round, i.e.

xt+1 = xt − η∇G(xt) (.)
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.. Statistical Learning

Problem Statement

A canonical problem in statistical learning usually involves a Data Space Z, a Label Space Y , a
Hypothesis Space H and a loss function l :H ×Z ×Y →R.

Forw ∈H, (z,y) ∈ Z×Y ,the loss of hypothesisw on(z,y) is denoted as l(w, (z,y)). In linear regression
problem, where w ∈Rn, z ∈Rn, y ∈R, the loss function is the square error,i.e. l(w, (z,y)) = (w ·z−y)2

Typically, H is assumed to be convex and l() is convex in H .For simplicity, denote loss function as
l(w,z) where z contains both observation and label.

In statistical learning, the distribution D over Z × Y is unknown. We have access to i.i.d samples
z1, · · ·zn and the goal is to choose hypothesis w to minimize the risk of w, defined as

r(w) = Ez∼D [l(w,z)] (.)

In general, we cannot compute r(w) as the distribution D is unknown. A learning algorithm will
solve the following optimization problem, known as Empirical Risk Minimization:

ŵn := arg min w∈H
1
n

n∑
t=1

l(w,zt) (.)

Define Bayes Risk as
min w∈H r(w) = r∗ (.)

Typical results in learning theory make the following statements

• r(ŵn)→ r∗, as n→∞

• ŵn→ w∗, as n→∞ (Consistency Statement)

Problem Solution: Online to Batch Conversion

Define ft(w) = l(w,zt)

Apply OCO to the sequence of samples, we will receive a sequence of wt’s.

Define w̄n = 1
n

∑n
t=1wt. Let εn = Regretn

n , we may analyze

Ed1···j r(w̄n) = Ed1···jEz∼D [l(w̄n, z)]
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where d1···j = {z1, · · · , zj}. By Jenson’s Inequality

Ed1···jEz∼D [l(w̄n, z)] ≤ E[
1
n

n∑
t=1

l(wt , z)]

≤ Ed1···n∼D [
1
n

n∑
t=1

Ez∼D [l(wt , z)|d1···t−1]]

= Ed1···n∼D [
1
n

n∑
t=1

Ezt l(wt , zt)|d1···t−1]

= Ed1···n∼D [
1
n

n∑
t=1

l(wt , zt)]

≤ Ed1···n∼D [
1
n

n∑
t=1

l(u,zt)] + εn (as εn is the regret bound)

= Ez∼D [l(u,z)] + εn = r(u) + εn (.)

The first equality in (.)holds by tower rule, since z and zt have the same distribution on
history z1 · · ·zt−1. The above inequality holds for any u, thus gives the bound on risk.
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