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Announcements

• Sign up sheet for project discussion.

• HW presentation coming up.

. Generic Bound of FTRL

.. Notation Switch

We will use ft(x) instead of lt(x) as the loss suffered in each round to avoid confusion with loss
vectors. For example, in expert setting, we have ft(x) = lt · x; in portfolios,ft(x) = −log(bt · x).

.. Analysis on Generic Bound of FTRL

In FTRL,

xt = arg minx∈X

t−1∑
s=1

fs(x) +
1
η
R(x) (.)

The generic bound is

∑
ft(xt)−minx

∑
ft(x) ≤ 1

η
(R(u)−R(x1)) +

T∑
t=1

(ft(xt)− ft(xt+1)) (.)

The first term is a constant, to evaluate the generic bounds the second term needs to be studied.

By convexity,
ft(xt)− ft(xt+1) ≤ ∇ft(xt)(xt − xt+1) (*)

This is a variant of the standard definition of convexity,

f (x)− f (y) ≥ ∇f (y)(x − y) (.)

We perform three different analysis on (*)

(a) By Cauchy-Schwartz inequality,

(*) ≤ ‖∇ft(xt)‖2‖xt − xt+1‖2 (.)

When the regularized function is chosen as

R(x) =
1
2
‖x1 − x‖22 (.)
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we have
xt+1 ≈ xt − η∇ft(xt)⇒ ‖xt − xt+1‖2 ≤ ‖η∇ft(xt)‖2 (.)

thus
(*) ≤ η‖∇ft(xt)‖22 (.)

When ‖∇ft(xt)‖22 is bounded,
ft(xt)− ft(xt+1) = O(η) (.)

Therefore
Regret = O(

1
η

+ T η) (.)

(b) By Hölder’s inequality,
(*) ≤ ‖∇ft(xt)‖p‖xt+1 − xt‖q (.)

where 1
p + 1

q = 1, ‖v‖p is defined as ‖v‖p = (
∑
|vi |p)1/p

For expert setting, R(x) =
∑
i xi logxi . Let p =∞,q = 1

‖∇ft(xt)‖∞ = ‖lt‖∞ = O(1) (.)

As xit+1 = xitexp(−ηlit ) (normalization term omitted for convenience)

‖xt − xt+1‖1 ≈
∑
i

xit(1− exp(−ηlit )) ≤ η
∑
i

xitl
i
t ≤ η (.)

The first inequality follows 1− e−x ≤ x and the second inequality holds as xt ∈ 4n and lt ∈ [0,1]n

(c) In general, the most generic bound is given as

RegretT ≤
1
η

(
(R(u)−R(x1)) +

T∑
t=1

DR(xt ,xt+1)
)

(.)

Bregman Divergence DR in (.) stands for Bregman Divergence.

Definition Given any convex function f , the Bregman Divergence of f is defined as

Df (x,y) = f (x)− f (y)−∇f (y)(x − y) (.)

Bregman Divergence actually measures the "gap" in linear approximation, as illustrated in Fig.

Property Bregman Divergence has the following properties

. Df (x,y) ,Df (y,x).

Equality is only true when f is quadratic, i.e.Df (x,y) = (x − y)T∇2f (x − y)(x − y)

. ∀x,y,Df (x,y) ≥ 0, assuming f is convex

. Df (x,y) = 0, iff x = y. Holds when f is strictly convex

. Quadratic approx of Bregman Divergence: if x is "close" to y,Df (x,y) ≈ (x−y)T∇2f (x−y)(x−y)
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Figure : Bregman Divergence

. Applications

.. Convex Optimization

In this application, we want to solve non-online online convex optimization problem, A.K.A Con-
vex Optimization:

minxG(x), where G is a convex function

This problem can be reduced to OCO (Online Convex Opitimization),i.e. select a sequence of xt’s
online.

Define ft(x) = ∇G(xt)(x − xt) +G(xt), we have the following observation

Observation .. By definition, ft(xt) = G(xt)

Observation .. By convexity, ft(x) ≤ G(x)

Let εT be a bound on RegretT
T , we would like to evaluate how "optimized" is 1

T

∑T
t=1 xt =: xT .

Denote x∗ as the minimizer of G,by Jenson’s Inequality

G(xT ) ≤ 1
T

∑
G(xt)

=
1
T

∑
ft(xt)

≤ 1
T

∑
ft(x

∗) + εT

≤ 1
T

∑
G(x∗) + εT

= G(x∗) + εT (.)

Notice:Maybe we do not want to apply FTRL to select xt as it requires solving a minimization
problem each round.

Instead,we may apply Online Gradient Descent(OGD) which requires O(dim) calculations each
round, i.e.

xt+1 = xt − η∇G(xt) (.)
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.. Statistical Learning

Problem Statement

A canonical problem in statistical learning usually involves a Data Space Z, a Label Space Y , a
Hypothesis Space H and a loss function l :H ×Z ×Y →R.

Forw ∈H, (z,y) ∈ Z×Y ,the loss of hypothesisw on(z,y) is denoted as l(w, (z,y)). In linear regression
problem, where w ∈Rn, z ∈Rn, y ∈R, the loss function is the square error,i.e. l(w, (z,y)) = (w ·z−y)2

Typically, H is assumed to be convex and l() is convex in H .For simplicity, denote loss function as
l(w,z) where z contains both observation and label.

In statistical learning, the distribution D over Z × Y is unknown. We have access to i.i.d samples
z1, · · ·zn and the goal is to choose hypothesis w to minimize the risk of w, defined as

r(w) = Ez∼D [l(w,z)] (.)

In general, we cannot compute r(w) as the distribution D is unknown. A learning algorithm will
solve the following optimization problem, known as Empirical Risk Minimization:

ŵn := arg min w∈H
1
n

n∑
t=1

l(w,zt) (.)

Define Bayes Risk as
min w∈H r(w) = r∗ (.)

Typical results in learning theory make the following statements

• r(ŵn)→ r∗, as n→∞

• ŵn→ w∗, as n→∞ (Consistency Statement)

Problem Solution: Online to Batch Conversion

Define ft(w) = l(w,zt)

Apply OCO to the sequence of samples, we will receive a sequence of wt’s.

Define w̄n = 1
n

∑n
t=1wt. Let εn = Regretn

n , we may analyze

Ed1···j r(w̄n) = Ed1···jEz∼D [l(w̄n, z)]
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where d1···j = {z1, · · · , zj}. By Jenson’s Inequality

Ed1···jEz∼D [l(w̄n, z)] ≤ E[
1
n

n∑
t=1

l(wt , z)]

≤ Ed1···n∼D [
1
n

n∑
t=1

Ez∼D [l(wt , z)|d1···t−1]]

= Ed1···n∼D [
1
n

n∑
t=1

Ezt l(wt , zt)|d1···t−1]

= Ed1···n∼D [
1
n

n∑
t=1

l(wt , zt)]

≤ Ed1···n∼D [
1
n

n∑
t=1

l(u,zt)] + εn (as εn is the regret bound)

= Ez∼D [l(u,z)] + εn = r(u) + εn (.)

The first equality in (.)holds by tower rule, since z and zt have the same distribution on
history z1 · · ·zt−1. The above inequality holds for any u, thus gives the bound on risk.
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