Announcements

- Sign up sheet for project discussion.
- HW2 presentation coming up.

11.1 Generic Bound of FTRL

11.1.1 Notation Switch

We will use $f_t(x)$ instead of $l_t(x)$ as the loss suffered in each round to avoid confusion with loss vectors. For example, in expert setting, we have $f_t(x) = l^t \cdot x$; in portfolios, $f_t(x) = -\log(b^t \cdot x)$.

11.1.2 Analysis on Generic Bound of FTRL

In FTRL,

$$x_t = \arg \min_{x \in X} \sum_{s=1}^{t-1} f_s(x) + \frac{1}{\eta} R(x) \quad (11.1)$$

The generic bound is

$$\sum f_t(x_t) - \min_x \sum f_t(x) \leq \frac{1}{\eta} (R(u) - R(x_1)) + \sum_{t=1}^{T} (f_t(x_t) - f_t(x_{t+1})) \quad (11.2)$$

The first term is a constant, to evaluate the generic bounds the second term needs to be studied.

By convexity,

$$f_t(x_t) - f_t(x_{t+1}) \leq \nabla f_t(x_t)(x_t - x_{t+1}) \quad (*)$$

This is a variant of the standard definition of convexity,

$$f(x) - f(y) \geq \nabla f(y)(x - y) \quad (11.3)$$

We perform three different analysis on $(*)$

(a) By Cauchy-Schwartz inequality,

$$\|(*)\| \leq \|\nabla f_t(x_t)\|_2 \|x_t - x_{t+1}\|_2 \quad (11.4)$$

When the regularized function is chosen as

$$R(x) = \frac{1}{2}\|x_1 - x\|_2^2 \quad (11.5)$$
we have
\[x_{t+1} \approx x_t - \eta \nabla f_t(x_t) \Rightarrow \| x_t - x_{t+1} \|_2 \leq \| \eta \nabla f_t(x_t) \|_2 \] (11.6)
thus
\[\leq \eta \| \nabla f_t(x_t) \|_2^2 \] (11.7)
When \(\| \nabla f_t(x_t) \|_2^2 \) is bounded,
\[f_t(x_t) - f_t(x_{t+1}) = O(\eta) \] (11.8)
Therefore
\[\text{Regret} = O(\frac{1}{\eta} + T\eta) \] (11.9)

(b) By Hölder’s inequality,
\[\leq \| \nabla f_t(x_t) \|_p \| x_{t+1} - x_t \|_q \] (11.10)
where \(\frac{1}{p} + \frac{1}{q} = 1 \), \(\| v \|_p \) is defined as \(\| v \|_p = (\sum |v_i|^p)^{1/p} \)
For expert setting, \(R(x) = \sum_i x_i \log x_i \). Let \(p = \infty, q = 1 \)
\[\| \nabla f_t(x_t) \|_\infty = \| l_t \|_\infty = O(1) \] (11.11)
As \(x_{t+1}^i = x_t^i \exp(-\eta l_t^i) \) (normalization term omitted for convenience)
\[\| x_t - x_{t+1} \|_1 \approx \sum_i x_t^i (1 - \exp(-\eta l_t^i)) \leq \eta \sum_i x_t^i l_t^i \leq \eta \] (11.12)
The first inequality follows \(1 - e^{-x} \leq x \) and the second inequality holds as \(x_t \in \Delta_n \) and \(l_t \in [0,1]^n \)

(c) In general, the most generic bound is given as
\[\text{Regret}_T \leq \frac{1}{\eta} \left((R(u) - R(x_1)) + \sum_{t=1}^T D_R(x_t, x_{t+1}) \right) \] (11.13)

Bregman Divergence \(D_R \) in (11.13) stands for Bregman Divergence.

Definition Given any convex function \(f \), the Bregman Divergence of \(f \) is defined as
\[D_f(x, y) = f(x) - f(y) - \nabla f(y)(x - y) \] (11.14)
Bregman Divergence actually measures the "gap" in linear approximation, as illustrated in Fig. 1

Property Bregman Divergence has the following properties
1. \(D_f(x, y) \neq D_f(y, x) \).
 Equality is only true when \(f \) is quadratic, i.e.\(D_f(x, y) = (x - y)^T \nabla^2 f(x - y)(x - y) \)
2. \(\forall x, y, D_f(x, y) \geq 0 \), assuming \(f \) is convex
3. \(D_f(x, y) = 0 \) iff \(x = y \). Holds when \(f \) is strictly convex
4. Quadratic approx of Bregman Divergence: if \(x \) is "close" to \(y \), \(D_f(x, y) \approx (x - y)^T \nabla^2 f(x - y)(x - y) \)
11.2 Applications

11.2.1 Convex Optimization

In this application, we want to solve non-online online convex optimization problem, A.K.A Convex Optimization:

$$\min_x G(x),$$

where G is a convex function.

This problem can be reduced to OCO (Online Convex Optimization), i.e. select a sequence of x_t's online.

Define $f_t(x) = \nabla G(x_t)(x - x_t) + G(x_t)$, we have the following observation

Observation 11.1. By definition, $f_t(x_t) = G(x_t)$

Observation 11.2. By convexity, $f_t(x) \leq G(x)$

Let ϵ_T be a bound on $\frac{\text{Regret}_T}{T}$, we would like to evaluate how "optimized" is $\frac{1}{T} \sum_{t=1}^{T} x_t =: \bar{x}_T$.

Denote x^* as the minimizer of G, by Jensen’s Inequality

$$G(\bar{x}_T) \leq \frac{1}{T} \sum G(x_t)$$
$$= \frac{1}{T} \sum f_t(x_t)$$
$$\leq \frac{1}{T} \sum f_t(x^*) + \epsilon_T$$
$$\leq \frac{1}{T} \sum G(x^*) + \epsilon_T$$
$$= G(x^*) + \epsilon_T$$

(11.15)

Notice: Maybe we do not want to apply FTRL to select x_t as it requires solving a minimization problem each round.

Instead, we may apply Online Gradient Descent (OGD) which requires $O(dim)$ calculations each round, i.e.

$$x_{t+1} = x_t - \eta \nabla G(x_t)$$

(11.16)
11.2.2 Statistical Learning

Problem Statement
A canonical problem in statistical learning usually involves a Data Space Z, a Label Space Y, a Hypothesis Space H and a loss function $l : H \times Z \times Y \to \mathbb{R}$.

For $w \in H, (z,y) \in Z \times Y$, the loss of hypothesis w on (z,y) is denoted as $l(w, (z,y))$. In linear regression problem, where $w \in \mathbb{R}^n, z \in \mathbb{R}^n, y \in \mathbb{R}$, the loss function is the square error, i.e. $l(w, (z,y)) = (w \cdot z - y)^2$

Typically, H is assumed to be convex and $l()$ is convex in H. For simplicity, denote loss function as $l(w, z)$ where z contains both observation and label.

In statistical learning, the distribution D over $Z \times Y$ is unknown. We have access to i.i.d samples z_1, \cdots, z_n and the goal is to choose hypothesis w to minimize the risk of w, defined as

$$r(w) = \mathbb{E}_{z \sim D}[l(w, z)] \quad (11.17)$$

In general, we cannot compute $r(w)$ as the distribution D is unknown. A learning algorithm will solve the following optimization problem, known as Empirical Risk Minimization:

$$\hat{w}_n := \arg \min_{w \in H} \frac{1}{n} \sum_{t=1}^n l(w, z_t) \quad (11.18)$$

Define Bayes Risk as

$$\min_{w \in H} r(w) = r^* \quad (11.19)$$

Typical results in learning theory make the following statements

- $r(\hat{w}_n) \to r^*$, as $n \to \infty$
- $\hat{w}_n \to w^*$, as $n \to \infty$ (Consistency Statement)

Problem Solution: Online to Batch Conversion

Define $f_t(w) = l(w, z_t)$

Apply OCO to the sequence of samples, we will receive a sequence of w_t’s.

Define $\bar{w}_n = \frac{1}{n} \sum_{t=1}^n w_t$. Let $\varepsilon_n = \frac{\text{Regret}_n}{n}$, we may analyze

$$\mathbb{E}_{d_{1:i}} r(\bar{w}_n) = \mathbb{E}_{d_{1:i}} \mathbb{E}_{z \sim D}[l(\bar{w}_n, z)]$$
where \(d_{1...j} = \{z_1, \cdots, z_j\}\). By Jenson’s Inequality

\[
\mathbb{E}_{d_{1...j}} \mathbb{E}_{z \sim D} [l(\tilde{w}_n, z)] \leq \mathbb{E} \left[\frac{1}{n} \sum_{t=1}^{n} l(w_t, z) \right]
\]

\[
\leq \mathbb{E}_{d_{1...n} \sim D} \left[\frac{1}{n} \sum_{t=1}^{n} \mathbb{E}_{z \sim D} [l(w_t, z)|d_{1...t-1}] \right]
\]

\[
= \mathbb{E}_{d_{1...n} \sim D} \left[\frac{1}{n} \sum_{t=1}^{n} \mathbb{E}_{z_t} l(w_t, z_t)|d_{1...t-1} \right]
\]

\[
= \mathbb{E}_{d_{1...n} \sim D} \left[\frac{1}{n} \sum_{t=1}^{n} l(w_t, z_t) \right]
\]

\[
\leq \mathbb{E}_{d_{1...n} \sim D} \left[\frac{1}{n} \sum_{t=1}^{n} l(u, z_t) \right] + \epsilon_n \quad \text{(as } \epsilon_n \text{ is the regret bound)}
\]

\[
= \mathbb{E}_{z \sim D} [l(u, z)] + \epsilon_n = r(u) + \epsilon_n \quad \text{(11.20)}
\]

The first equality in \(11.20\) holds by tower rule, since \(z\) and \(z_t\) have the same distribution on history \(z_1 \cdots z_{t-1}\). The above inequality holds for any \(u\), thus gives the bound on risk.