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EECS598: Prediction and Learning: It’s Only a Game Fall 2013
Lecture 17: FTRL and Applications of OCO
Prof. Jacob Abernethy Scribe: Lianli Liu
Announcements

* Sign up sheet for project discussion.

* HW2 presentation coming up.

11.1  Generic Bound of FTRL
11.1.1 Notation Switch

We will use f;(x) instead of I;(x) as the loss suffered in each round to avoid confusion with loss
vectors. For example, in expert setting, we have f;(x) = I' - x; in portfolios, f;(x) = —log(b’ - x).

11.1.2 Analysis on Generic Bound of FTRL

In FTRL,
t-1
Xy =arg min, y ;’fS(X)JF%R(x) (11.1)
The generic bound is
T
Y filx)-ming Y fi(x) < %(R(u) —R(x1))+ ) (filx) = filxe)) (11.2)

t=1
The first term is a constant, to evaluate the generic bounds the second term needs to be studied.

By convexity,

Je(xe) = fe(xe1) < Vfir(xe) (X = xp41) (*)
This is a variant of the standard definition of convexity,
fx)=f() = Vf(y)x-y) (11.3)

We perform three different analysis on

(a) By Cauchy-Schwartz inequality,
<V fi(xpllallxs = xp41l2 (11.4)

When the regularized function is chosen as

1
R(x) = Sy -3 (11.5)
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we have
xpp1 2 X =NV fi(x0) = [Ix = x4l < MV fi(xo)ll2 (11.6)
thus
<V (x5 (11.7)
When ||Vﬂ(xt)||§ is bounded,
Je(xe) = fe(xpi1) = O(n) (11.8)
Therefore
Regret:(’)(%JrTq) (11.9)
(b) By Holder’s inequality,
<IVA(x)llplixesn —xllg (11.10)

where I%'F% =1, ||vll, is defined as |[v[|, = (Y |v;|P)V/P
For expert setting, R(x) =) ;x;logx;. Let p=00,9 =1
IV (x)lleo = I lloo = O(1) (11.11)

As xi 1= xiexp(—nli) (normalization term omitted for convenience)

b = xpall = ) xi(1—exp(-nlf) <y ) xjli < (11.12)

1

The first inequality follows 1 —e™ < x and the second inequality holds as x; € A, and I; € [0,1]"

(c) In general, the most generic bound is given as

1

Regret; < —((R(u) - R(x1))+ ) Dg(x,Xp41)) (11.13)

]TMH
—_

=

Bregman Divergence Dy in stands for Bregman Divergence.

Definition Given any convex function f, the Bregman Divergence of f is defined as

D¢(x,9) = f(x)= f(¥) - Vf(¥)(x-9) (11.14)

Bregman Divergence actually measures the "gap" in linear approximation, as illustrated in Fig/[1]

Property Bregman Divergence has the following properties
1. D¢(x,9) = D¢ (p, x).
Equality is only true when f is quadratic, i.e.D¢(x,y) = (x — VIV f(x-)(x-)
2. Yx,7, Df(x,y) > 0, assuming f is convex
3- Df(x,9) =0, iff x = y. Holds when f is strictly convex

4. Quadratic approx of Bregman Divergence: if x is "close” to y,D¢(x, y) = (x=9)TV2 f (x-p)(x-v)
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Figure 1: Bregman Divergence

11.2 Applications
11.2.1 Convex Optimization

In this application, we want to solve non-online online convex optimization problem, A.K.A Con-
vex Optimization:

min,G(x), where G is a convex function

This problem can be reduced to OCO (Online Convex Opitimization),i.e. select a sequence of x;’s
online.

Define f;(x) = VG(x;)(x — x;) + G(x;), we have the following observation

Observation 11.1. By definition, fi(x;) = G(x;)

Observation 11.2. By convexity, f;(x) < G(x)

Regret . e _
Let 1 be a bound on egTre L, we would like to evaluate how "optimized" is %Z}:l X = XT.

Denote x* as the minimizer of G,by Jenson’s Inequality

=G(x")+er (11.15)

Notice:Maybe we do not want to apply FTRL to select x; as it requires solving a minimization
problem each round.

Instead,we may apply Online Gradient Descent(OGD) which requires O(dim) calculations each
round, i.e.
Xia1 =% ~VG(x,) (11.16)
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11.2.2 Statistical Learning

Problem Statement

A canonical problem in statistical learning usually involves a Data Space Z, a Label Space Y, a
Hypothesis Space H and a loss function I : HxZ xY — R.

Forw € H,(z,y) € ZxY ,the loss of hypothesis w on(z,y) is denoted as I(w, (z,y)). In linear regression
problem, where w € R",z € R",p € IR, the loss function is the square error,i.e. [(w,(z,v)) = (w-z—y)2
Typically, H is assumed to be convex and [() is convex in H.For simplicity, denote loss function as
I(w, z) where z contains both observation and label.

In statistical learning, the distribution D over Z x Y is unknown. We have access to i.i.d samples
z1,+--z, and the goal is to choose hypothesis w to minimize the risk of w, defined as

r(w)=E,.p[l(w,2)] (11.17)

In general, we cannot compute r(w) as the distribution D is unknown. A learning algorithm will
solve the following optimization problem, known as Empirical Risk Minimization:

1 n
W, := arg min weH 7, Zl(w,zt) (11.18)
t=1
Define Bayes Risk as
min ,cyr(w)=r" (11.19)

Typical results in learning theory make the following statements

* r(w,) > r*,asn— oo

* W, - w", as n — oo (Consistency Statement)

Problem Solution: Online to Batch Conversion
Define f;(w) = l(w, z;)
Apply OCO to the sequence of samples, we will receive a sequence of w;’s.

. _ Regret
Define w,, = %Z:’:l w;. Let g, = gn L

we may analyze

lEdl.”j r(wn) = lEd14..lez~D [l(ﬁ/n, Z)]
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where dy..; ={z1,---,z;}. By Jenson’s Inequality
1 n
Eq, Baepll(@y,2)] <E[-) I(w,2)
=1
1 n
< IEdlA_,n~D[E ZIEZ~D[l(th z)|dy..t-1]]
t=1
1 n
=Eq, ol ) Exlwpz)dyi]
=1
1 n
= IEdl...,pD[; Zl(wt, z¢)]
t=1

1 n
< IEdlmn"’D[E Zl(u,zt)] +¢&, (as ¢, is the regret bound)
t=1

=E, p[l(u,z)]+e,=r(u)+¢, (11.20)

The first equality in (11.20)holds by tower rule, since z and z; have the same distribution on
history z; ---z;_;. The above inequality holds for any u, thus gives the bound on risk.
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