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Announcements

• Homework due on Monday, Oct 28th, 

• Guest lecturer Rafael Frongillo today.

 Online Convex Optimization: A Gradient Descent Approach

. General Framework of Online Convex Optimization (OCO)

Assume we have a decision space X ⊂ R
n, which is convex, closed and compact. The game goes on

such that:

For t = 1, ...,T

• Player plays some xt ∈ X.

• Nature reveals some lt : X→R which is convex.

• Player suffers loss of lt(xt).

Our goal is to minimize the regret regards the best static decision in hindsight:

RegretT :=
T∑
t=1

lt(xt)−min
x∈X

T∑
t=1

lt(x) (.)

. Online Gradient Descent (OGD) Approach

This algorithm is introduced by [Zin]. Assuming {lt(·)}Tt=1 are differentiable:

Starting with some arbitrary x1 ∈ X.

For t = 1, ...,T

• zt+1← xt − η 5 lt(xt).

• xt+1←ΠX(zt+1), where ΠX(·) is the projection function.

The performance of OGD is described as follows.

Theorem .. If there exists some positive constant G,D such that

|| 5 lt(x)||2 ≤ G,∀t,x ∈ X (.)
||X ||2;= max

x,y∈X
||x − y||2 ≤D (.)

Then RegretT (OGD) ≤ O(DG
√
T ).
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Proof. As usual we define potential function Φt := − 1
2η ||xt − x

∗||22. Notice that by (.), for every t
we have:

Φt+1 −Φt ≥ 5lt(xt)(xt − x∗)−
η

2
|| 5 lt(xt)||22

≥ lt(xt)− lt(x∗)−
η

2
|| 5 lt(xt)||22 ≥ (lt(xt)− lt(x∗))−

η

2
G2.

Sum the above inequality up from t = 1 to T and by (.) we have

ΦT+1 −Φ1 =
T∑
t=1

Φt+1 −Φt ≥
T∑
t=1

(lt(xt)− lt(x∗))−
η

2
G2 = RegretT (OGD)−

ηG2T

2
.

On the other hand,

ΦT+1 −Φ1 =
1

2η
(||x1 − x∗||22 − ||xT+1 − x∗||22) ≤

||x1 − x∗||22
2η

≤ D
2

2η

To sum up we have

RegretT (OGD) ≤
ηG2T

2
+
D2

2η
∼ O(DG

√
T )

and the last equation is achieved by choosing η =D/(G
√
T ). QED.

Comment .

• What if the gradient doesn’t exist? Use sub-gradient.

• The bound may not be optimal! Think about the expert setting, Theorem . only gives us
O(
√
nT ).

 Game-theoretic Probability in Finance

* This part of lecture is based on the first three chapters of [SV], all the figures except Figure 
are from [SV].

. Preliminary Examples

We consider a non-realistic stock that today sells for $ a share and tomorrow will either go down
in price to $ or go up in price to $. There is a derivative xwhose pay-off depends on tomorrow’s
stock price. The model is shown in Figure .



Lecture : Game-theoretic Probability in Finance 

Figure : First Example

The question is: what would the value of x be if we have no arbitrage constraint? By “no arbitrage”
we means no matter what happens there is no guaranteed positive pay-off. In this simple example,
the no-arbitrage value of x would be $: we can buy  shares of the stock. If the stock goes down
from $ to $, the loss of $ per share wipes out the $; if the stock goes up from $ to $, the
gain of $ per share is just enough to cover the $ needed to provide x’s pay-off $. If we set
the value of $x lower than $, then there is an arbitrage of buy more shares than , and similarly
when we set the value higher then just buy less than  shares.

The no-arbitrage price could also be an range of price. Consider the second example in Figure .

Figure : Second Example

Here we add another potential outcome of the stock price of tomorrow, which is remain at $.
The pay-off of this outcome of derivative x′ would be $. It is easy to see that in this case, the
no-arbitrage price is a interval [$0,$60].

The no-arbitrage price also exists in multi-stage game setting. Consider the third example in
Figure 

Figure : Third Example
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Here we add one more stage to the second stage. The decision maker has a chance to adjust his
number of share at the second stage after he observed the outcome of price at tomorrow noon ($
or $). The pay-off of the derivative x only depends on the final outcome, no matter what history
the outcome has. In this example, the no-arbitrage price is $. To hedge this price, we first buy
 share of the stock today. We adjust this hedge at noon tomorrow, either by selling these shares
(if the price goes down to $) or by buying another  shares (if the price goes up to $).

. Game Theoretic Probability Theory

Now we formalize the discussed examples.

An outcome tree (like the ones above) is defined as the World, and the decision maker/gambler
is defined as a Skeptic. The moves available to World may depend on moves he has previously
made. But we assume that they do not depend on moves Skeptic has made. Skeptic’s bets do not
affect what is possible in the world, although World may consider them in deciding what to do
next.

Each nodes in the tree represents a t. The initial situation is denoted by �. We define the strategy
function P (·) as a real-valued function that maps a situation t to a decision. In the previous
examples, t would be the stock prices and P (t) is the number of shares to buy.

We further define a capital process KP (t) as the Skeptic’s capital in situation t. We assume KP (�) =
0, and Skeptics change of capital is linear, i.e. if the World change from situation t by ω, then
Skeptics change of capital is P (t)ω, thus his capital at situation tω is KP (tω) =KP (t) +P (t)ω.

We define a martingale as a function s(t) = α+KP (t), where α is some initial endowment. We define
a variable x(t) as a real-valued function that maps a terminal situation t to some monetary pay-off,
which is the derivative in the previous examples. Given a variable x, we define its upper expectation
and lower expectation as follows:

E[x] = inf{α| exists a strategy P such that for all terminal situation t,α +KP (t) ≥ x(t)}
E[x] = sup{α| exists a strategy P such that for all terminal situation t,α +KP (t) ≤ x(t)}

The upper expectation can be interpreted as the lowest amount of money at which the Skeptic
can buy the derivative x, and the lower expectation can be interpreted as the highest amount of
money at which the Skeptic can sell the derivative x. We can also write the expectations in a regret
form:

E[x] = inf
P

sup
t
{x(t)−KP (t)}

E[x] = sup
P

inf
t
{x(t)−KP (t)}

If E[x] = E[x], we define the expectation as E[x] = E[x] = E[x].

With the definition of expectation we can further define probability. Similarly we have the fol-
lowing definition for upper probability and lower probability:

P[E] = E[IE], P[E] = E[IE]

where the event E is a set of terminal situation and

IE(t) =
{

1, if t ∈ E
0, o.w.
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Similarly, we define probability as P[E] = P[E] = P[E] if the latter two are equal.

One way to visualize this formulation is through a 2 −D coordination system. Consider all the
(t,x) pairs in previous example two. The strategy that could buy such a derivative x would be
any line that covers all three points from above, and the upper expectation and upper probability
would be the intercept and slope of the line. The similar hold for the lower expectation and lower
probability. The expectation and probability exists if and only if the line that covers all the points
from above coincide with the line that covers from below. In Figure  it is the dashed red line.

Figure : Interpretation of probability and Expectation

After we define expectation and conditional expectation we can revisit some obvious property of
martingale:

Eω[s(tω)|t] = s(t)

This is similar as the standard measure-base probability theory. It says your expected capital over
all possible change ω given that your are in situation t is exactly your capital at situation t, i.e.
s(t).

. Strong Law of Large Number

Consider a Skeptic with initial endowment α = 1. The World plays in a infinite time scale i =
1, ...,N , .... At round i, the World chooses ωi ∈ [−1,1]. Denote the path t as t =ω1ω2ω3.... We stated
SLLN without prove it.

Theorem .. If we define a event E := {t| lim
n→∞

1
n

∑n
i=1ωi = 0}, then P (¬E) = 0
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