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Announcements

• Homework  due in one week.

• It is time to think about the projects. There will be discussion on early November.

. Universal Portfolios Review

Consider the problem with n stocks and bt ∈ (0,∞)n as the “Price relatives” where bti = Pricet+i (i)
Pricet(i)

.
Our decision is the portfolio w ∈ ∆n, which means we have wi fraction of wealth invest in stock i.
From time t to time t + 1, the wealth grows by wbt =

∑
iwib

t
i . Without loss of generality, we can

consider the starting wealth c = 1.

.. Constant Rebalanced Portfolio

We focus on a certain class of policies called the constant rebalanced portfolio(CRP), where the
w is constant for each day. Then the total wealth of a CRP policy after T days would be VT (w) =∏T
t=1(w ·bt).

.. Cover’s Algorithm - UCRP

To compete with the best CRP under all scenarios, we consider a Universal CRP(UCRP), where
the money is invested in all CRP’s evenly. In another word, all CRP got an infinitesimal amount
of weight. We try to develop a regret bound of the UCRP to the best CRP.

Proof ideas: Define the ball around w0 as Ballε(w0) = {w : (1− ε)w0 + εv, where v ∈ ∆n}. By this
definition, we can see the following two properties:

• Vol[Ballε(w0)] = εn−1Vol(∆n)

• VT (w) ≥ VT (w0)(1− ε)T

With these, we are ready to show the regret bound of the UCRP to the best CRP using these two
properities.
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Proof:

Wealth(UCRP) =
1

Vol(∆n)

∫
w∈∆n

VT (w)dµ(w)

≥ 1
Vol(∆n)

∫
w∈Ballε(w∗)

VT (w)dµ(w)

≥ 1
Vol(∆n)

∫
w∈Ballε(w∗)

dµ(w)VT (w∗)(1− ε)T

= εn−1(1− ε)TVT (w∗)

It is clear that we need to tune the parameter ε to achieve a good bound. The best bound could be
a little bit complex to achieve and we just let ε = 1

T and it can give a good enough result.
To derive the bound, we let ε = 1

T and look at the log-wealth of UCRP and CRP:

Logwealth(UCRP) ≥ −(n− 1)log
1
ε

+ T log(1− ε) + logVT (w∗)

= −(n− 1)logT +O(1) + logVT (w∗)

This gives the bound of UCRP. �

The properties of UCRP:

• The regret is O(n logT )in log space.

• UCRP only very mild assumption on price relatives(could be very large or small).

• UCRP requires no tuning(although the analysis part need some tuning).

• Here we ignore the transition cost, but it is easy to be added.([BK])

• UCRP is not efficient to implement. (See [KV] for details)

• Lots of work within Online Convex Optimization(OCO) framework on efficient algorithm
with the same regret bound.

. Online Convex Optimization(OCO)

The general framework in OCO looks like this:

• We have a decision spaceX ∈Rnf ort = 1, ...,T .Assume thatX is convex, closed and bounded.

• Player chooses xt ∈ X, then nature chooses lt : X
convex−−−−−−→R,

• Player suffers lt(xt) and observe lt, (we will go to bandit setting where player only observe
lt(xt) soon!)

We want to minimize the regret
∑T
t=1 lt(xt)−minx∗∈X

∑T
t=1 lt(x

∗).

There are a variety of problems fall into the category of OCO, here are some examples:
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Setting Action Data Loss
Prediction with expert advice w ∈ ∆n (f, y) ∈ (0,1)n+1 l(w,f, y)
Action setting P ∈ ∆n lt ∈ [0,1]n plt
Linear Prediction (pattern recognition) w ∈Rn (x, y) ∈R× {−1,1} max(0, ywx)
Portfolio Selection w ∈ ∆n bt ∈ (0,∞)n − logwb

.. Online Gradient Decent (OGD)[Zin]

First we define the projection function Projx(z) = argminx∈X ‖x − z‖2. Then we know: ) Projx(z) = z
iff z ∈ X. ) ‖x − z‖2 ≥

∥∥∥x −Projx(z)
∥∥∥

2
.

The main idea of OGD method is the following:

• Choose an initial x0 arbitrarily in X.

• For each t = 1, ...,T

– zt+1 = xt − η∇lt(xt),
– xt+1 = ProjX(zt+1).

It can be shown that if ∇t := ∇lt(xt) has norm ≤ G, and D := maxx,y∈X
∥∥∥x − y∥∥∥

2
. Then regret(ODG)≤

η G
2T
2 + D2

2η . Apply tuning to η and let η = D
G
√
T

, we can have regret(ODG)≤ GD
√
T .
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