Announcements

- Class by Guest Lecturer Ambuj Tewari

1 Convex Optimization

\[
\min_{x \in C} f(x)
\] \hspace{1cm} (1.1)

\(C \subseteq \mathbb{R}^d, f : \mathbb{R}^d \rightarrow \mathbb{R}, C \) is a convex set and \(f \) is a convex function.

\(C \) is convex if: \(x, y \in C \Rightarrow \lambda x + (1 - \lambda)y \in C, \forall \lambda \in [0, 1] \)

\(f \) is convex if: \(f(\lambda x + (1 - \lambda)y) \leq \lambda f(x) + (1 - \lambda)f(y), \forall x, y, \lambda \in [0, 1] \)

Rockafeller: "Watershed in optimization is not between linearity and non-linearity but it is between convexity and inconvexity".

Seminal work in online convex optimization: Zinkevich (2003) "Online convex prog. and generalized infinitesimal gradient descent".

1.1 Online Convex Optimization (OCO) "protocol"

FOR \(t = 1 \) to \(T \)

learner/player plays \(x_t \in C \)

nature/adversary reveals \(f_t \) (convex)

learner suffers a cost/loss \(f_t(x_t) \)

END

Remarks:

- "Converging to a solution " does not really make sense in this setting
- Redefine goal to be "achieve low regret"

\[
\text{regret} = \sum_{t=1}^{T} f_t(x_t) - \min_{x \in C} \sum_{t=1}^{T} f_t(x)
\] \hspace{1cm} (1.2)
2 Interesting Special Cases of OCO

2.1 Experts Problems

\[C = \Delta^d = \{ \vec{p} \in \mathbb{R}^d : p_j \geq 0, \sum_{j=1}^{d} p_j = 1 \} \]

\[f_t(x) = l_t \cdot x \text{ where } l_t \in [0,1]^d \]

Think of player’s move \(x_t \in C = \Delta^d \) as a probability distribution over experts. \(l_t \in \mathbb{R} \) encodes loss suffered by the experts at time \(t \).

\(l_t \cdot x = \) expected loss of the player where he picks expert \(j \) with probability \(x_j \).

\[\text{regret} = \sum_{t=1}^{T} l_t \cdot x_t - \min_{x \in C} \sum_{t=1}^{T} l_t \cdot x = \text{expected loss of player} - \text{loss of best expert in hindsight} \]

2.2 Online Classification/Regression using linear prediction and convex loss

for \(t=1 \) to \(T \)

learner/player receives \(z_t \in \mathbb{R}^d \)

classifier/predictor encoded by \(w_t \in \mathbb{R}^d \) is used to output \(w_t \cdot z_t \)

learner receives true value label \(y_t \)

learner suffers \(l[w_t \cdot z_t; y_t] \) (loss function)

end

Let’s say we only want to consider linear predictors \(z \to w \cdot t \) such that \(\|w\|_2 \leq W \), where \(\|w\|_2 = \sqrt{\sum_{j=1}^{d} w_j^2} \).

\[\text{Convex: } C = \{ w \in \mathbb{R}^d, \|w\|_2 \leq w \} \]

\[f_t(w) = l(w \cdot z_t, y_t) \]

If \(l(\cdot, y) \) is convex \(\forall y \) then \(f_t \) is convex in \(w \)

Example of convex losses:

\[l(t, y) = \frac{1}{2} (t - y)^2 \text{(regression)} \]

\[l(t, y) = \max(0,1 - t \cdot y) \text{("hinge loss")} \]

\[t(t, y) = \log(1 + e^{-yt}) \text{("logistic loss")} \]

3 Algorithms for OCO

Idea1: Just "follow the leader"

\[x_t = \arg \min_{x \in C} \sum_{s=1}^{t-1} f_s(x) \]
Counter example

\[c = [-1, 1] \in \mathbb{R} \] \hspace{1cm} (3.2)

\[f_t(x) = c_t x \] \hspace{1cm} (3.3)

Leader plays \(x_1 \in [-1, 1] \) \(c_1 = -0.5, x_2 = 1, c_2 = 1, x_3 = -1, c_3 = -1, x_4 = 1, c_4 = 1, \ldots \). For the adversary defined by \(c_1 = -0.5 \) and for \(t > 1 \)

\[c_t = \begin{cases}
1 & \text{t is even} \\
-1 & \text{t is odd}
\end{cases} \] \hspace{1cm} (3.4)

We will now argue that FTL suffers \(O(T) \) regret. Player’s loss:

\[\sum_{t=1}^{T} c_t x_t = c_1 x_1 + 1 + 1 + 1 + \ldots + 1 = O(T) \] \hspace{1cm} (3.5)

Best loss in hindsight = \(\min_{x \in [-1,1]} \sum c_t x \leq \sum c_t 0 = 0 \) \(\Rightarrow \) Regret is also \(O(T) \)

Good news about FTL: *If \(f_t \)'s are not just convex but strongly convex then FTL has \(O(\log T) \) regret.*

If we slightly change FTL to include a strongly convex function we can improve the regret bound.

FTRL: Follow the Regularized leader

\[x_t \in \arg \min_{x \in c} \eta \sum_{s=1}^{t-1} f_s(t) + \frac{1}{2} \|x\|_2^2 \] \hspace{1cm} (3.6)

We will prove a regret guarantee for FTRL assuming:

- There are no constraints i.e., \(C = \mathbb{R}^d \)
- \(f_t \) is a linear function, \(f_t(x) = c_t \cdot x \)

BTL (Beat the Leader) (illegal algorithm)

\[x_t^{BTL} \in \arg \min_{x \in c} \sum_{s=1}^{t} f_s(x) \] \hspace{1cm} (3.7)

Lemma about BTL

\[\sum_{t=1}^{T} f_t(x^{BTL}) \leq \sum_{t=1}^{T} f_t(x), \forall x \in c \] \hspace{1cm} (3.8)
Proof by backward induction

\[f_1(x_1^{BTL}) + f_2(x_2^{BTL}) + \ldots + f_T(x_T^{BTL}) \leq f_1(x) + f_2(x) + \ldots + f_T(x) \] \hfill (3.9)

\[f_1(x_T^{BTL}) + \ldots + f_{T-1}(x_{T-1}^{BTL}) \leq f_1(x_T^{BTL}) + f_2(x_T^{BTL}) + \ldots + f_{T-1}(x_{T-1}^{BTL}) \] \hfill (3.10)

Counting down \(T - 2, T - 3, \ldots, 1 \) proves the lemma.

- \(x_1^{FTRL} \) is BTL output on \(\frac{1}{2} \|x\|^2 \)
- \(x_2^{FTRL} \) is BTL output on \(\frac{1}{2} \|x\|^2, f_1 \)
- \(x_3^{FTRL} \) is BTL output on \(\frac{1}{2} \|x\|^2, f_1, f_2 \ldots \)

Using BTL Lemma

\[\frac{1}{2} \|x^{FTRL}\|^2 + \sum f_t(x_{t+1}^{FTRL}) \leq \frac{1}{2} \|x\|^2 + \sum f_t(x) \] \hfill (3.11)

\[\Rightarrow \sum_{t=1}^{T} (f_t(x_t^{FTRL}) - f_t(x)) \leq \frac{1}{2} \|x\|^2 - \frac{1}{2} \|x_1^{FTRL}\|^2 + \sum_{t=1}^{T} (f_t(x_t^{FTRL}) - f_t(x_{t+1}^{FTRL})) \] \hfill (3.12)

Because of assumptions \(x_t^{FTRL} = -\eta \sum_{s=1}^{t-1} c_s \), and hence \(f_t(x_t^{FTRL}) - f_t(x_{t+1}^{FTRL}) = \eta \|c_t\|^2 \)

Therefore regret against \(x \leq \frac{1}{2} \frac{\|x\|^2}{\eta} + \eta \sum_{t=1}^{T} \|c_t\|^2 \)