Lecture 12: Online Convex Optimization 1

EECS598: Prediction and Learning: It’s Only a Game Fall 2013

Lecture 12: Online Convex Optimization
Prof. Ambuj Tewari Scribe: Monica Eboli

Announcements

* Class by Guest Lecturer Ambuj Tewari

1 Convex Optimization
1;16%1 f(x) (1.1)
CCRY f:RY - R, Cis a convex set and f is a convex function.
Cis convexif: x,ye C=Ax+(1-1)yeC,VAe[0,1]
fis convexif: f(Ax+(1-A)y) < Af(x)+(1-A)f(v),Vx,9,A€[0,1]

Rockafeller: "Watershed in optimization is not between linearity and non-linearity but it is be-
tween convexity and inconvexity".

Seminal work in online convex optimization: Zinkevich (2003) "Online convex prog. and gener-
alized infinitesimal gradient descent".

1.1 Online Convex Optimization (OCO) "protocol"

FORt=1t0 T
learner/player plays x; € C
nature/adversary reveals f; (convex)
learner suffers a cost/loss f;(x;)

END

Remarks:

* "Converging to a solution " does not really make sense in this setting

* Redefine goal to be "achieve low regret"

T T
regret = th(xt)—r?eig th(x) (1.2)
t=1 t=1
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2 Interesting Special Cases of OCO

2.1 Experts Problems

d
C=A"=(peR:p;>0,) p;=1) (2.1)
j=1
fi(x) =1, -x where I, € [0,1]¢ (2.2)

Think of player’s move x; € C = A% as a probability distribution over experts. I, € R encodes loss
suffered by the experts at time .

l; - x = expected loss of the player where he picks expert j with probability x;.
T T
regret = ) lp-x;— miél th - x = expected loss of player —loss of best expert in hindsight (2.3)
xe
= t=1

t=1

2.2 Online Classification/Regression using linear prediction and convex loss

FOR t=1t0 T
learner/player receives z, € IR?
classifier/predictor encoded by w; € R? is used to output w; - z;
learner receives true value label y;
learner suffers I[w; - z;;v;] (loss function)
END

Let’s say we only want to consider linear predictors z — w -t such that ||w||, < W, where ||w||, =

d 2
\/2]51 wi.

Convex:C = {w € R, ||w||, < w) (2.4)
few) =1(w -z, 1) (2.5)
If I(-,v) is convex Yy then f; is convex in w (2.6)
Example of convex losses:
I(t,y) = %(t - y)z(regression) (2.7)
I(t,y) = max(0,1 —t-p)("hinge loss") (2.8)
t(t,y) = log(1 + e ?")("logistic loss") (2.9)

3 Algorithms for OCO

Idea1: Just "follow the leader"

t—1
x, € argmin Zlfs(X) (3-1)
s=
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Counter example
c=[-1,1]eR

fe(x) =cx

Leader plays x; € [-1,1] ¢y = =05, x, =1, ¢, =1, x3=-1,c3=-1,x3=1,¢c4 =1, ....

adversary defined by ¢; = —-0.5 and for t > 1

_J1tiseven
P77 1-1tisodd

We will now argue that FTL suffers O(T) regret. Player’s loss:

xp=c1x;+1+1+1....+1=0(T)

™1~

t=1

Best loss in hindsight = miny¢_1,1) ). ¢;x <} ¢;0 = 0 = Regret is also O(T)

(3-2)
(3-3)
For the

Good news about FTL: * If f,’s are not just convex but strongly convex then FTL has O(logT)

regret.

* If we slightly change FTL to include a strongly convex function we can improve the regret bound.

FTRL: Follow the Regularized leader

1 1Ixl13

t—1
Xy € argmini Zlfs(t) 27
S=

We will prove a regret guarantee for FTRL assuming;:

e There are no constraints i.e., C = R?

* f;is alinear function, f;(x) =c¢;-x

BTL (Beat the Leader) (illegal algorithm)

xXec

t
xPTh € argmin Zfs(x)
s=1

Lemma about BTL
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Proof by backward induction

AT + £(ETh) + o+ fr(eBTE) < fi(x) + folx) + o+ fr(x

TL TL
AT v+ o (BT < AGETE) + £ (o BThY L+ fro (BT

Counting down T —-2,T —3,...,1 proves the lemma.

FTRL is BTL output on %%
gTRL is BTL output on L ”);” N
gTRL is BTL output on 5 1 |x” 1o
Using BTL Lemma ETRLLS
1|lx ||2 FTRL 1 ||x||
T DI ES b AT

¢ FTRL ”ng 1||xfTRL||% L FTRL FTRL
= (AT - fi(x) < -5 ) (AT = R

1
2 2
g 1 t=1
FTRL _ t-1 FTRL FTRL
Because of assumptions x; —11) 1 Cs, and hence f;(x, —fi

Therefore regret against x %Tl nyl, lle:ll5

(xf 55 = nlledlls

(3.11)

(3.12)
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