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Recap

We discussed two algorithms for solving zero-sum games, defined by a pay-off matrix M € [0, 1]"*™.

1% algorithm

Start with the uniform distribution in A, i.e. p! = (%, ce, e

Update using

where exp(-) of a vector is just the point-wise exponential of each element of the vector and
Z;41,Z+41 are the normalisation factors.

2™ algorithm

The only modification from above is using sequential best-response

qt+1 = argmax pt+1Mq
- geAﬂl - -

Fact 10.1. For both algorithms, the average strategies
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are 2e—Nash equilibrium.

Definition 10.2. p,q are e-NE if

p"™™Mq —e<p"™Mq<p Mg+e Vpq

11 Follow the Leader (FTL)

At every time, put all the weight on the least cumulative loss expert

p*l=argmin p-
p =
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Question Why is FTL bad?

Answer through example: Take the loss sequence as
expert 1 — {0.5,0,1,0...} expert2 — {0,1,0,1...}

then FTL will suffer a loss > T — 1 up to round T when each expert has only suffered a loss of %
This gives linear regret.

OPEN PROBLEM What if we try to find e-NE with FTL?

(This was originally considered as a natural way to get at NE and the corresponding approach was
known as “Fictitious play”)

It was shown by Robinson (1956) - Convergence to é~NE is at rate O(e~ (")),

Karlin Conjecture: O(POly(n’m)) is achievable with FTL.

2

12 Boosting

Input space & and labels {c : X — {0, 1}}. We have a weak hypothesis h: X — {0,1}, h € H. Given a
parameter y > 0, we take the Weal Learning assumption,

Assumption 12.1 (WLA,). ¥ p € A(X), 3 hj € H such that

+ % e P, (h~(x) Z c(x)) <

v
] 2

N =

M. = +1 if h]'(Xi);ﬁCj(xi)
Y711 otherwise

Then WLA,, is equivalent to

pTMEj <-y
Strong Learning
For all x; € X there exists a g € A(H) such that

Pireg [A(x;) = c(x;)] 2 Py [h(x)) 2 c(xi)] & ¢ Mg <0

We already know that Weak Learning implies Strong Learning using Strong Duality p” M ej<-y=
eiTM q<-y<0.
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Boosting by Majority

Start with pl = (%,..., ) € A(X).
For t=1,2,..., for each p’ find h; € H such that

Pyt [hy(x) # c(x)] <

N =
(ST

(using WLA,, there will be at least one).

Update according to,

Finally return

where g’ puts weight 1 on h;.

We already know that 47 will be e7—NE, so

Regret < yq lo§n

Vi el-TMq < Value of Game +

Soif T > lc;gzn then
Plincorrect] < P[correct]

which gives Strong Learning.

Diagram representing decision boundaries through various iterations of ADABOOST is uploaded on
the course website.

13 Perceptron Algorithm (Linear Online Prediction)

We observe a sequence (x',9'),...,(xT,yT) e R? x {~1,1} and we would like to find a weight vector
w such that
sgn(w-x')=y" Vit

This weight vector will give us a separating hyperplane between the set of negative and positive
data points.
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Perceptron Algorithm Start with w! = 0 € R%.
Fort=1,...,T, predict

9" =sgn(w'x')

1

If prediction is correct i.e. 9' =y’ then don’t change weights w'*! = w’. Otherwise update weights

as

t+1 t

wh = w' 'y

Definition 13.1. For any w that correctly classifies {(gl,yl)}thl, the margin of w is the largest y > 0
such that y'(w-x") >y V ¢.
To make above a proper definition, assume ||x||, ||w||, < 1.

Theorem 13.2. Assuming there exists a w* with margin vy, the number of mistakes made by the
Perceptron algorithm is less than y 2.

Let M, be the mistakes up to round t. We will prove the theorem using the following claims
Claim 13.3 (a). w' - w* >y M,
Claim 13.4 (b). [lw'||* < M,

Proof of Claim (a). We will use induction on the rounds. If there is no mistake then it is trivial, so
assume we are on a mistake round.

A 1 ok

Py = wthwt =W ) w >y M+ y = (M +1) = yM,y,

So using induction we are done. O]

Proof of Claim (b). We use induction again, and for non-mistake round it is trivial so we consider a
mistake round

™17 = ' + 'Y 1P = !+ [xp 11 + 2w - 2y < My + 1+ 2w x'p" <My +1 = My
~—_———
—-ve
t
Proof of Theorem 13.2. Now with the two claims, we have
1

1
Lt MTS—Z

T * T *
yMy<sw' w L|lw || |w| < yMr-1=yMp = y<
VMt 14
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