
Lecture : Boosting and Perceptron Algorithms 

EECS: Prediction and Learning: It’s Only a Game Fall 

Lecture : Boosting and Perceptron Algorithms
Prof. Jacob Abernethy Scribe: Abhinav Sinha

Recap

We discussed two algorithms for solving zero-sum games, defined by a pay-off matrix M ∈ [0,1]n×m.

st algorithm

Start with the uniform distribution in ∆n i.e. p1 = 〈1
n , · · · ,

1
n〉.

Update using

pt+1 = pt ·
exp(−ηM · qt)

Zt+1
qt+1 = qt ·

exp(ηpt ·M)

Z̄t+1

where exp(·) of a vector is just the point-wise exponential of each element of the vector and
Zt+1, Z̄t+1 are the normalisation factors.

nd algorithm

The only modification from above is using sequential best-response

qt+1 = argmax
q∈∆m

pt+1Mq

Fact .. For both algorithms, the average strategies

1
T

T∑
t=1

pt and
1
T

T∑
t=1

qt

are 2ε−Nash equilibrium.

Definition .. p,q are ε−NE if

pTMq′ − ε ≤ pTMq ≤ p′TMq+ ε ∀ p′ ,q′

 Follow the Leader (FTL)

At every time, put all the weight on the least cumulative loss expert

pt+1 = argmin
p

p ·
t∑
s=1

`s

Lecture : Boosting and Perceptron Algorithms 

Question Why is FTL bad?

Answer through example: Take the loss sequence as

expert  − {0.5,0,1,0 . . .} expert  − {0,1,0,1 . . .}

then FTL will suffer a loss ≥ T − 1 up to round T when each expert has only suffered a loss of T+1
2 .

This gives linear regret.

OPEN PROBLEM What if we try to find ε−NE with FTL?

(This was originally considered as a natural way to get at NE and the corresponding approach was
known as “Fictitious play”)

It was shown by Robinson () - Convergence to ε−NE is at rate O(ε−(n+m)).

Karlin Conjecture: O(P oly(n,m)
ε2) is achievable with FTL.

 Boosting

Input space X and labels
{
c : X → {0,1}

}
. We have a weak hypothesis h : X → {0,1}, h ∈ H. Given a

parameter γ > 0, we take the Weal Learning assumption,

Assumption . (WLAγ). ∀ p ∈ ∆(X), ∃ hj ∈ H such that

Pp
(
hj(x) = c(x)

)
≥ 1

2
+
γ

2
⇔ Pp

(
hj(x) , c(x)

)
≤ 1

2
−
γ

2

If we assume |X | =N and |H| =H are finite and define matrix M ∈ {−1,1}N×H as

Mij =

+1 if hj(xi) , cj(xi)

−1 otherwise

Then WLAγ is equivalent to
pTMej ≤ −γ

Strong Learning

For all xi ∈ X there exists a q ∈ ∆(H) such that

Ph∼q [h(xi) = c(xi)] ≥ Ph∼q [h(xi) , c(xi)] ⇔ eTi Mq < 0

We already know that Weak Learning implies Strong Learning using Strong Duality pTMej ≤ −γ ⇒
eTi Mq ≤ −γ < 0.

Lecture : Boosting and Perceptron Algorithms 

Boosting by Majority

Start with p1 = 〈 1
N , . . . ,

1
N 〉 ∈ ∆(X).

For t = 1,2, . . ., for each pt find ht ∈ H such that

Px∼pt [ht(x) , c(x)] ≤ 1
2
−
γ

2

(using WLAγ there will be at least one).

Update according to,

pt+1
i = pti

exp
(
η(−1)1[ht(xi)=c(xi)]

)
Zt

Finally return

q̂T =
1
T

T∑
t=1

qt

where qt puts weight 1 on ht.

We already know that q̂T will be εT−NE, so

∀ i eTi Mq ≤ Value of Game +
Regret
T

≤ −γ +

√
logn
T

So if T ≥ logn
γ2 then

P[incorrect] < P[correct]

which gives Strong Learning.

Diagram representing decision boundaries through various iterations of ADABOOST is uploaded on
the course website.

 Perceptron Algorithm (Linear Online Prediction)

We observe a sequence (x1, y1), . . . , (xT , yT) ∈ Rd × {−1,1} and we would like to find a weight vector
w such that

sgn(w · xt) = yt ∀ t

This weight vector will give us a separating hyperplane between the set of negative and positive
data points.

Lecture : Boosting and Perceptron Algorithms 

Perceptron Algorithm Start with w1 = 0̄ ∈ Rd .

For t = 1, . . . ,T , predict
ŷt = sgn(wt · xt)

If prediction is correct i.e. ŷt = yt then don’t change weights wt+1 = wt. Otherwise update weights
as

wt+1 = wt + ytxt

Definition .. For any w that correctly classifies {(x1, y1)}Tt=1, the margin of w is the largest γ > 0
such that yt(w · xt) ≥ γ ∀ t.

To make above a proper definition, assume ‖x‖2,‖w‖2 ≤ 1.

Theorem .. Assuming there exists a w? with margin γ , the number of mistakes made by the
Perceptron algorithm is less than γ−2.

Let Mt be the mistakes up to round t. We will prove the theorem using the following claims

Claim . (a). wt ·w? ≥ γMt

Claim . (b). ‖wt‖2 ≤Mt

Proof of Claim (a). We will use induction on the rounds. If there is no mistake then it is trivial, so
assume we are on a mistake round.

ŷt , yt ⇒ wt+1 ·w? = (wt + ytxt) ·w? ≥ γMt +γ = γ(Mt + 1) = γMt+1

So using induction we are done.

Proof of Claim (b). We use induction again, and for non-mistake round it is trivial so we consider a
mistake round

‖wt+1‖2 = ‖wt + xtyt‖2 = ‖wt‖2 + ‖xtyt‖2 + 2wt · xtyt ≤Mt + 1 + 2wt · xtyt︸ ︷︷ ︸
−ve

<Mt + 1 =Mt+1

Proof of Theorem .. Now with the two claims, we have

γMt ≤ wT ·w? ≤ ‖wT ‖ · ‖w?‖ ≤
√
MT · 1 =

√
MT ⇒ γ ≤ 1

√
MT

⇔ MT ≤
1
γ2

	Follow the Leader (FTL)
	Boosting
	Perceptron Algorithm (Linear Online Prediction)

