
Prediction and Learning: It’s Only a Game - Homework #3

Jacob Abernethy Due: 11/27/2013

Homework Policy: Working in groups is fine. Please write the members of your group on your solutions.
There is no strict limit to the size of the group but we may find it a bit suspicious if there are more than 4
to a team. Questions labelled with (Challenge) are not strictly required, but you’ll get some participation
credit if you have something interesting to add, even if it’s only a partial answer.

1) Generalized Minimax Theorem. (20 pts) Let X ⊂ Rn and Y ⊂ Rm be convex compact sets. Let
f : X × Y → R be some differentiable function with bounded gradients, where f(·,y) is convex in its first
argument for all fixed y, and f(x, ·) is concave in its second argument for all fixed x.

Prove that
inf
x∈X

sup
y∈Y

f(x,y) = sup
y∈Y

inf
x∈X

f(x,y).

And, furthermore, give an efficient algorithm for finding an ε-optimal pair (x∗,y∗).

2) Online Non-Convex Optimization. Sometimes our nice assumptions don’t always hold. AWWW
SHUCKS!! But maybe things will still work out just fine. For the rest of this problem assume that X ⊂ Rn
is the learner’s decision set, and the learner observes a sequence of functions f1, f2, . . . , fT mapping X → R.
The regret of an algorithm choosing a sequence of x1,x2, . . . is defined in the usual way:

RegretT :=

T∑
t=1

ft(xt)− min
x∈X

T∑
t=1

ft(x)

(a) (15 pts) It would really suck if X were not actually convex, wouldn’t it? Prove that, as long as X
is bounded and the functions ft are convex, there exists a randomized algorithm that guarantees an
expected regret bound that scales as

√
T . (Hint: You might want to think about the convex hull of

X. And let’s not concern ourselves with efficiency.)

UPDATE: First, one student asked what it means to be “convex when the domain X is not convex”,
and this is a good point. To clarify, here you can assume that ft is defined as the restriction of some
convex function defined on all of Rn.
Second, the convex analysis issues here are somewhat more difficult that I had intended. To get full
credit you can solve one of two special cases: (i) assume the functions ft are linear on all Rn or
(ii) assume that n = 1 and we are in a 1-dimensional setting, and the fts are convex although not
necessarily linear. I will leave the general problem as a nice (Challenge).

(b) (15 pts) Wouldn’t it ruin your lovely day if the functions ft were not convex? Maybe the only two
conditions you can guarantee is that the functions ft are bounded (say in [0, 1]) and are 1-Lipschitz :
they satisfy that |ft(x)− ft(x′)| ≤ ‖x−x′‖2. Prove that, assuming X is convex and bounded, there
exists a randomized algorithm with a decent expected regret bound. Something like

√
nT log T

would be admirable. (Hint: Always good to ask the experts for ideas. And you needn’t worry about
efficiency.)

1

Prediction and Learning: It’s Only a Game - Homework #3 Due 11/27/2013

3) Information-theoretic Lower Bound for EXP3. (25 pts) Someone hands you N coins and
tells you that all BUT ONE are symmetrically weighted: each will come up heads exactly half the time.
But there’s one odd coin I ∈ [N] that lands heads with probability 1

2 + ε for some ε > 0. Your task is to

sequentially select coins to flip, in any manner you choose, and then to make a guess Î ∈ [N] which is the
odd coin.

CLAIM(*): If you perform fewer than cN
ε2 coin flips, where c > 0 is some constant, then Pr(Î = I) ≤ 3/4.

In other words, no algorithm will have a very good chance to guess the odd coin with so few coin tosses.

It turns out that the above claim is true, but we will not concern ourselves with proving it here. Instead we
will use it to construct a lower bound. Recall that the EXP3 algorithm has a regret bound on the order of√
TN logN where N is the number of arms and T is the length of the sequence. Prove that if we could find

an algorithm with a slightly better regret bound, say O((NT)
1
2−δ) for some δ > 0, we could then violate

CLAIM(*).

UPDATE: The version of this problem that I intended is slightly more difficult: I should have said that
if you can find an algorithm with regret bound of the form O(T

1
2N

1
2−δ) then you can violate CLAIM(*).

You are welcome to solve this as originally stated for full credit, but the latter case is more interesting since
it shows precisely that the

√
N dependence is fundamental to the bandits problem.

4) Competing Against Changing CRPs. (25 pts) Recall that we had a modification to the EWA
algorithm earlier in the course in which we were able to compete against the best changing sequence of
experts, as long as the expert we were competing against didn’t switch too many times. We achieved a
regret bound on the order of

√
kT (logN + log T) where k was the number of switches.

Let’s now try to do the same thing for universal portfolios! The inputs to the algorithm are a sequence of
price relative vectors for n assets, b1,b2, . . . ∈ (0,∞)n and the algorithm must select a sequence of portfolios
w1,w2, . . . ∈ ∆n. The basic UCPR strategy is as follows: if Vt(w) :=

∏t
s=1 w · bs is the (multiplicative)

wealth earned by CRP w, then universal CRP algorithm should choose a portfolio on day t+ 1 defined by

UCRP(b1, . . . ,bt) :=

∫
w∈∆n

(∏t
s=1 w · bs

)
wdw∫

w∈∆n

(∏t
s=1 w · bs

)
dw

In other words, the portfolio should be the average of all portfolios w in the simplex, but weighted by the
function Vt(w), the wealth earned by w.

Here’s a proposed strategy for competing against changing CRPs: be forgetful! Mix together a sequence of
UCRP algorithms, each of which has forgotten some set of days in the past. Specifically, define

ÛCRP(b1, . . . ,bt) :=
1

t+ 1

t∑
s=0

UCRP(bs+1,bs+2, . . . ,bt).

where the last term in the sum is the just the initial UCRP strategy UCRP(∅).

Prove that ÛCRP can compete against any sequence of best-in-hindsight CRPs w1
∗,w

2
∗, . . . ,w

T
∗ , as long as∑T

t=1 1[wt
∗ 6= wt+1

∗] ≤ k, with a regret bound that is roughly O(kn log T). Recall that the regret here is
defined as the log wealth ratio; that is, if the algorithm chooses a sequence of portfolios w1, . . . ,wT then

RegretT := log

(∏T
t=1 w

t
∗ · bt∏T

t=1 w
t · bt

)

2

