
Prediction and Learning: It’s Only a Game - Homework #2

Jacob Abernethy Due: 10/28/2013

Homework Policy: Working in groups is fine. Please write the members of your group on your solutions.
There is no strict limit to the size of the group but we may find it a bit suspicious if there are more than 4
to a team. Questions labelled with (Challenge) are not strictly required, but you’ll get some participation
credit if you have something interesting to add, even if it’s only a partial answer.

1) Regret of Follow the Perturbed Leader. We will observe a sequence of loss vectors `1, `2, . . . , `T ∈
[0, 1]n. We need an algorithm for picking a sequence of distributions p1,p2, . . . ,pT ∈ ∆n with the goal of
minimizing regret. For the rest of this problem we shall define regret relative to some p as

RegretT (Alg;p) :=

T∑
t=1

(pt · `t − p · `t).

Note that this differs slightly than our usual notion where p is chosen to be the best distribution (or expert)
in hindsight.

I have already mentioned an algorithm often called Follow The Leader (FTL) defined as

FTL := pt ← arg min
p∈∆n

p ·

(
t−1∑
s=1

`s

)

There’s an easy lower bound that shows that this algorithm can achieve Θ(T ) regret which is bad! But what
if we just perturb this algorithm slightly? Here’s an alternative approach which involves playing FTL on the
cumulative loss vector with some added noise.

FTPL := X
u.a.r.∼ [0, b]n; then ∀t pt ← arg min

p∈∆n

p ·

(
X +

t−1∑
s=1

`s

)

Note that the perturbation X is only sampled once in this algorithm. X is sampled uniformly at random
from a cube, and note that the sidelength of the cube b > 0 is a parameter which we can tune.

For analysis purposes, it is convenient to define two fictitious algorithms, known as Be The Leader (BTL),
and Be The Perturbed Leader (BTPL).

BTL := pt ← arg min
p∈∆n

p ·

(
t∑

s=1

`s

)

BTPL := X
u.a.r.∼ [0, b]n; then ∀t pt ← arg min

p∈∆n

p ·

(
X +

t∑
s=1

`s

)
.

What is different here? Notice I changed the sum to end at s = t rather than s = t− 1 – that’s why they are
fictitious, they get to see one datapoint in the future! In these algorithms we are “being” the leader rather
than “following” the leader because we actually can compute the leader up to and including the loss vector
that will arrive today.
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(a) BTL, while not a realistic algorithm, kicks ass! Prove, for any p ∈ ∆n, that

RegretT (BTL;p) ≤ 0

Hint: Induction.

(b) BTPL is really not that much worse than BTL. Prove that

RegretT (BTPL;p) ≤ b.

Note that this is a deterministic statement, doesn’t depend on the sample of X.

(c) Let p1,p2, . . . ,pT be the distributions played by FTPL throughout the sequence. Assume that
BTPL and FTPL were run using the same perturbation X. Prove that

RegretT (FTPL;p) = RegretT (BTPL;p) +
T∑
t=1

(pt − pt+1) · `t.

Again this is for fixed (nonrandom) X.

(d) It turns out that by perturbing the loss by X, we are much less likely to switch from round to round.
If pt,pt+1 are the distributions played by FTPL on rounds t and t+1 (respectively), then show that
for any t,

E
X

u.a.r.∼ [0,b]n
[(pt − pt+1) · `t] ≤ n

b
.

Hint: Define the random variables Zt := X +
∑t−1
s=1 `

s and Zt+1 := X +
∑t
s=1 `

s. Notice that the
distributions of Zt and Zt+1 overlap significantly.

(e) Let’s put it all together! Prove that for a particular choice of b we can achieve:

E
X

u.a.r.∼ [0,b]n
[Regret(FTPL;p)] ≤

√
nT .

It’s ok if you didn’t solve all of the above, you may use the conclusions from each subproblem.

(f) It is important for the analysis that X is sampled once and fixed throughout the sequence. But in
terms of expected regret, would it matter if we sampled X separately for each round? Why or why
not?

(g) (Challenge) It’s too bad the above bound isn’t as tight as the O(
√
T log n) bound we can get with

EWA. Can FTPL be improved using a better choice of perturbation X? I might suggest a Laplace
distribution or a Gaussian. I know a Laplace will work, but I have reason to believe that the Gaussian
is actually roughly the minimax optimal choice, although I’ve not seen a bound proven for this case.

(h) (Challenge) Is there a way to implement EWA in the action setting using FTPL? In other words,
can you choose a perturbation random variable X such that the maximizing action on round t is
chosen with the same probabilities as the EWA distribution?
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2) Solving Feasibility Problems with Perceptron. We can define a special class of LP feasibility
(LFP) problems as follows. Given a set of m vectors a1, . . . ,am ∈ Rd, we want to determine if there exists

an x ∈ Rd such that ai · x > 0 for i = 1, . . . ,m. For any x we can define ν(x) := mini
ai·x

‖ai‖2‖x‖2 which is

positive if x is feasible. Define the wiggle room of the feasibility problems as ν∗ := supx∈Rd ν(x).

(a) Assume we are given an LFP defined by a1, . . . ,am ∈ Rd which we know to be feasible with wiggle
room ν∗ > 0. Using Perceptron as a subroutine, give an algorithm that finds a feasible solution

requiring no more than
(

1
ν∗

)2
updates to Perceptron. Prove that your solution works.

(b) Implement your solution and find a solution to a constraint problem I generated! You will find a
CSV file on the course website constraints.csv which defines a 10-dimensional LFP problem with
439 constraints. Each row of the file represents a vector ai = (ai1, . . . , a

i
10). Please provide your final

solution normalized, i.e. give a vector x with ‖x‖2 = 1. Include a printout of your code.

3) Computing Equilibria via Learning. Let’s find an ε-Nash solution to the following zero sum game:

M =


5 8 3 1 6
4 2 6 3 5
2 4 6 4 1
1 3 2 5 3

 .

Recall that a pair (p,q) ∈ ∆4 ×∆5 is an ε-Nash if

max
j∈{1,2,3,4,5}

p>Mej − min
i∈{1,2,3,4}

e>i Mq ≤ ε.

We will use the term optimality gap to refer to the quantity on the left hand side of the above expression.

(a) Find an ε-Nash solution to the above game by implementing, in code, the following methods:

(1) Have both players “learn” from the other using EWA. (IMPORTANT: How do we actually get an
ε-Nash using a learning strategy?)

(2) Have player 1 use EWA to compute pt but let player 2 select a best response to pt; i.e. qt :=
arg maxq(pt)>Mq.

(3) Have both players use FTPL. Have both players sample their perturbation independently on each
round.

(4) Have both players use FTL, i.e. no perturbation. This is known as fictitious play.

For each of the above, run the algorithms for at least T > 10, 000 rounds, and report the ε-Nash pair you
obtain. Make a single plot showing the optimality gap as a function of T for all methods. Include
printout of your code.

(b) (Challenge) We don’t have a regret bound for FTL, so we can not use existing techniques to show
an optimality gap that shrinks at a rate of O(T−1/2). But empirically fictitious play appears to
converge at such a rate. Can you prove why this is? (Note: this is the Karlin Conjecture, and it has
been open for a long time. So good luck :-))
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