
Prediction and Learning: It’s Only a Game - Homework #1

Jacob Abernethy Due: 9/25/2013

Homework Policy: Working in groups is fine. Please write the members of your group on your solutions.
There is no strict limit to the size of the group but we may find it a bit suspicious if there are more than 4
to a team. Questions labelled with (Challenge) are not strictly required, but you’ll get some participation
credit if you have something interesting to add, even if it’s only a partial answer.

Preliminaries: I’m going to use a lot of big-Oh notation, including things like O(·), o(·), ω(·),Ω(·),Θ(·).
This is probably familiar to the CS folks but may be less so for students in other departments. If you’re not
familiar with this yet I recommend wikipedia or other online sources! These concepts will be utilized more
and more in lecture.

1) Tuning Parameters. We are going to imagine we have some algorithm A with a performance bound
that depends on some input values (which can not be adjusted) and some tuning parameters (which can be
optimized). We will use greek letters (α, η, ζ, etc.) for the tuning parameters and capital letters (T,D,N,
etc.) for inputs. We would like the bound to be the tightest possible, up to multiplicative constants. For
each of the following, tune the parameters to obtain the optimal bound. Using big-Oh notation is fine to
hide constants, but you must not ignore the dependence on the input parameters. For example, assuming
M,T > 0, imagine we have a performance guarantee of the form:

Performance(A;M,T, ε) ≤Mε+
T

ε
(1)

and we know ε > 0. Then by optimizing the above expression with respect to the free parameter we can

tune ε←
√

T
M . With this value we obtain Performance(A;M,T, ε) = O(

√
MT)

NOTE: I didn’t have to make up this problem, I actually pulled all the bounds below from different papers!

(a) Performance(A;T,N, η) ≤ Tη + logN
η + η2

(b) Performance(A;T,N, η) ≤ logN+ηT
1−exp(−η)

(c) Performance(A;T, η) ≤ max(Tη, η−2)

(d) Performance(A;T, η) ≤ T
η + exp(η). (Note: you needn’t obtain the optimal choice of η here or the

tightest possible bound, but try to tune in order to get a bound that is o(T) – i.e. the bound should
grow strictly slower than linear in T .)

(e) Performance(A;N,T, η, ε) ≤ Tε
η + N

ε + Tη

(f) Performance(A;T, δ, α) ≤
√
T
δ + Tδ

α + αT

1

Prediction and Learning: It’s Only a Game - Homework #1 Due 9/25/2013

2) The Doubling Trick. Let’s imagine that an online learning algorithm that runs in T rounds has the
bound in Eq. (1). By optimally tuning ε we obtain a bound of the form O(

√
TM). The problem with this

approach is that it requires us to know T in advance. Is there a way around this issue?

Imagine constructing a modified algorithm A′ that does the following iterative procedure. A′ starts with an
initial parameter ε1, implements algorithm A using this parameter for T1 rounds, then adjusts the parameter
to ε2, and runs A for T2 rounds, and so forth. Let’s say ε gets updated k times, where T1 +T2 + . . .+Tk = T .
You can also assume that Performance(A′;T,M) =

∑k
i=1 Performance(A;Ti,M, εi).

(a) Can you construct a schedule for the sequence of (εi, Ti) that achieves the same bound (up to
a multiplicative constant factor) as the optimally tuned bound (namely, O(

√
MT)) that requires

knowing T in advance? (Note: this is referred to as a “doubling trick”.) In other words, you want
to choose the sequence of sequence of T1, T2, . . ., with the associated ε1, ε2, . . . so that whenever the
game truly ends, at a previously unknown T , the bound Performance(A′;T,M) = O(

√
MT) will

always hold.

(b) (Challenge) How about a similar doubling trick to obtain the optimal bound from problem 1 part
(e) above? This requires modifying two parameters!

3) Exponential Weights Algorithm with a Prior. The Exponential Weights Algorithm had the initial
weights w1

1, . . . , w
1
n all set to 1. What if instead we imagine an algorithm A′ where we set these weights

according to w1
i = pi where ~p is some distribution (i.e. pi ≥ 0 for all i and

∑
i pi = 1). We will do the same

multiplicative update rule as before.

(a) Prove that with this modified algorithm we achieve the following bound: for any expert i we have
that

LossT (A) ≤ log p−1i + ηLossT (expert i)

1− e−η

(b) (Challenge) We would love to obtain a bound that has optimally tuned η for the best choice of i.
That is, we would hope that we can guarantee the following:

LossT (A) ≤ min
i

(
LossT (expert i) + log p−1i +

√
log p−1i T

)
.

The problem is that we can’t determine the best i in advance. Is it possible to get something like
this, or close, using a doubling trick? (Note: I don’t have a full answer to this question myself! But
I do know there are some difficulties here :-))

4) Subsets as Experts. We saw that when we wanted to do “predictive sorting” it’s not easy to apply
the halving algorithm to the class of all permutations (rankings) as experts. But this isn’t the case for all
classes of “complex experts”.

Imagine a setting where we have N experts but our goal is not to choose one but k < N of them on each
round! We can imagine having a “hyperexpert” for each subset S ⊂ [N], with |S| = k, of which there are
clearly

(
N
k

)
. Let SNk be the set of all k-sized subsets of [N]. On round t, each “base” expert i suffers loss `ti

which implies that the hyperexpert S suffers loss

losst(S) :=
∑
i∈S

`ti,

2

Prediction and Learning: It’s Only a Game - Homework #1 Due 9/25/2013

that is, the hyperexpert loss is additive across the base experts in the subset. Our aim is to run the Expo-
nential Weights Algorithm on these subset hyperexperts. With this well-defined loss on each hyperexpert
and a given parameter η, we can define the weight update wt+1

S = wtS exp(−ηlosst(S)).

In many scenarios in which we are dealing with hyperexperts, it’s suitable to compute the “projected” weights
for each base expert i. That is, assume we can run our algorithm by simply knowing uti :=

∑
S∈SN

k :i∈S w
t
S . In

other words, if our weights define a distribution over SNk , then the value uti corresponds to the (unnormalized)
marginal probability of i being in a randomly drawn subset. Can we obtain these values efficiently? If so,
how?

Hint: Given a vector of positive values v1:n := 〈v1, . . . , vn〉, we can define

SumProd(v1:n, k) :=
∑
S∈Sn

k

∏
i∈S

vi

Naively this requires O(nk) computation, but perhaps there is a faster way to compute SumProd?

3

