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Abstract. We address the problem of constructing randomized online algorithms
for the Metrical Task Systems (MTS) problem on a metric δ against an oblivious
adversary. Restricting our attention to the class of “work-based” algorithms, we
provide a framework for designing algorithms that uses the technique of regular-
ization. For the case when δ is a uniform metric, we exhibit two algorithms that
arise from this framework, and we prove a bound on the competitive ratio of each.
We show that the second of these algorithms is ln n + O(log log n) competitive,
which is the current state-of-the art for the uniform MTS problem.

1 Introduction

Consider the problem of driving on a congested multi-lane highway with the goal of
getting home as fast as possible. You are always able to estimate the speed of all of the
lanes, and must pick some lane in which to drive. At any time you are able to switch
lanes, but pay an additional penalty for doing so proportional to the distance from your
current lane. How should you pick lanes and when should you switch?

This is a concrete example of the metrical task system (MTS) problem, first intro-
duced by Borodin, Linial and Saks [1]. The problem is defined on a space of n states
with an associated distance metric function. The input to the problem is a series of cost
vectors c ∈ R

n
+. A MTS algorithm must choose a state i after seeing each c and must

pay the service cost ci. In addition, the algorithm pays a cost for switching between
states that is their distance in the given metric. An alternative model, and the focus of
the present work, is to imagine a randomized algorithm that maintains a distribution
over the states on each round, and pays the expected switching and servicing cost.

Metrical task systems form a very general framework in which many well-known on-
line problems can be posed. The k-server problem on an n-state metric [2], for example,
can be modeled as a metrical task system problem with

(
n
k

)
states1 Another example is

process migration over a compute cluster - in this view each node is a state, the distance
metric represents the amount of time it takes for a process to migrate from one node to
another and the cost vector represents the current load on the machine.

The randomized MTS problem looks strikingly similar to one much more familiar
to the learning community: the “experts” setting [3]. The experts problem also requires
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choosing a distribution on [n] on each of a sequence of rounds, witnessing a cost vector,
and paying the associated expected cost of the selected distribution. The two primary
distinctions are that (a) no switching cost is paid in the experts problem and (b) the MTS
comparator, i.e. the offline strategy against which we compare the online algorithm, is
given much more flexibility. In the experts problem, the algorithm is only compared
to an offline algorithm that must fix its state throughout the game, whereas the MTS
offline comparator may choose the cheapest sequence of states knowing all service cost
vectors in advance.

The most common measure of the quality of an MTS algorithm is the competitive
ratio, which takes the performance of the online algorithm on a worst-case sequence
of cost vectors and divides this by the cost of the optimal offline comparator on the
same sequence. This is a notable departure from the notion of regret, which measures
the difference between the worst-case online and offline cost, and is a much more com-
mon metric for evaluating learning algorithms. This extension is necessary because the
complexity of the MTS comparator grows over time.

Prior Work. Borodin, Linial and Saks [1] showed that the lower bound on the compet-
itive ratio of any deterministic algorithm over any metric is 2n− 1. They also designed
an algorithm, the Work-Function algorithm, that achieves exactly this bound. This al-
gorithm was further analyzed by Schafer and Sivadasan using the smoothed analysis
techniques of Spielman and Teng to show that the average competitive ratio can be
improved to o(n) when the topological features of the metric are taken into account [4].

Results improve dramatically when randomization is allowed. The first result for
general metrics was an algorithm that achieved a competitive ratio of e

e−1n− 1
e−1 , [5]

by Irani and Seiden. In a breakthrough result, Bartal, Blum, Burch and Tompkins [6]
gave the first poly-logarithmic competitive algorithm for all metric spaces. This algo-
rithm uses Bartal’s result for probabilistically embedding general metric spaces into hi-
erarchically well-separated trees [7, 8]. Fiat and Mendel [9] improved this result further
to the currently best competitive algorithm that is O(log2 n log log n). Recently, Bansal,
Buchbinder and Naor [10] proposed another algorithm for general metrics based on a
primal-dual approach that is only O(log3 n)-competitive, but has an optimal competi-
tive factor with respect to service costs. The best known lower bound on the competitive
ratio for general metrics is Ω(log n/ log2 log n) [11]. This improves upon the previous

bound of Ω(
√

log n/ log2 log n) [12]. A widely believed conjecture is that an O(log n)-
competitive algorithm exists for all metric spaces.

Better bounds are known for some special metrics. For example, for the line metric a
slightly better result of O(log2 n) is known [9]. Another metric for which better results
are known is the weighted star metric which has an O(log n)-competitive algorithm [9,
13]. The best understood, and most extensively studied metric space is the uniform
metric. For the uniform case, Bartal, Linial and Saks [1] showed a lower bound on
the competitive ratio for any algorithm of Hn, the nth harmonic number. They [1] also
designed an algorithm, Marking, that has competitive ratio 2Hn. An alternate algorithm,
Odd-Exponent [6], bears some similarity to one of the algorithms in this paper, and has
a 4 log n + 1 competitive ratio on the uniform metric. This upper bound was further
improved by the Exponential algorithm [5] to Hn + O(

√
log n). Recently, the Wedge
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algorithm [14] was introduced with competitive ratio of 3
2Hn− 1

2n . They claim that this
achieves a better competitive ratio when n < 108. Bansal, Buschbinder and Naor [15,
16] designed an algorithm for the uniform metric that is based on a previous primal-dual
approach and has near optimal competitive ratio.

Our Contributions. We make several contributions to the randomized metrical task
system problem. In Section 2, we propose a clear and coherent framework for devel-
oping and analyzing algorithms for the MTS problem. We appeal to the class of work-
based algorithms for which the probability distribution is chosen as a function of the
work vector, to be defined in the Preliminaries. We provide the most comprehensive set
of analytical tools for bounding the competitive ratio of work-based algorithms.

In Section 3, we develop an approach to the MTS problem using a regularization
framework. This provides a generic template for constructing randomized MTS algo-
rithms based on certain parameters of the regularized objective. For the case of the
uniform metric, we employ the entropy function as a regularizer and exhibit two novel
algorithms. The second of these achieves the current state-of-the-art competitive ratio
of Hn + O(log log n). We discuss potential methods for constructing general-metric
algorithms as well.

1.1 Preliminaries

The set [n] := {1, . . . , n} is a metric space if there exists a distance metric δ : [n] ×
[n] → R+. The primary feature of metrics that we will use is that they satisfy the
triangle inequality. Given p1,p2 ∈ Δn, where Δn is the n-simplex, we define the Earth
Mover Distance (EMD), or Wasserstein Distance, distδ(p1,p2), as the least expensive
way to transition between p1 and p2. It can be computed by the program

min
∑

i,j∈[n] δ(i, j)xi,j

subject to 1�
n [xi,j ] = p1, [xi,j ]1n = p2, xi,j ≥ 0 ∀i, j ∈ [n]

We note that, when working with the uniform metric, the EMD is simply the total
variational distance. In addition, in an important special case, we can express the EMD
in closed form, as described by the following Lemma.

Lemma 1. Assume we are given p1,p2 ∈ Δn with the property that p1 dominates p2

at every coordinate but i, that is p1
j ≥ p2

j whenever j �= i. Then

distδ(p1,p2) =
∑

j∈[n]\{i}
(p1

j − p2
j)δ(i, j)

The Randomized Metrical Task Systems Problem. Given n states and a metric δ over
[n], a randomized algorithm is given a sequence of service cost vectors c1, c2, . . . , cT ∈
R

n
+ as input and must choose a sequence of distributions p1,p2, . . . ,pT ∈ Δn. The

cost of some algorithm A is the total expected “servicing cost” plus the total “moving”
cost, i.e.

costA(c1, . . . , cT ) :=
T∑

t=1

(
pt · ct + distδ(pt,pt−1)

)
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where p0 is some default distribution, 〈1, 0, . . . , 0〉 by convention.
An offline MTS algorithm may select pt with knowledge of the entire sequence of

cost vectors c1, . . . , cT . We refer to the optimal offline algorithm by OPT(c1, . . . , cT ).
In this Section we discuss how OPT is computed easily with a simple dynamic program.

An online MTS algorithm can select pt with knowledge only of c1, . . . , ct. Notice
that, unlike in the usual “expert setting”, we let an online algorithm have access to the
cost vector ct before the distribution pt is chosen and the cost pt · ct is paid.

We measure the performance of an online algorithm by its Competitive Ratio (CR),
which is the ratio of the cost of this algorithm relative to the cost of the optimal offline
algorithm on a worst-case sequence. More precisely, the CR is the infimal value C > 0
for which there is some b such that, for any T and any sequence c1, c2, . . . , cT ,

costA(c1, c2, . . . , cT ) ≤ C · costOPT(c1, c2, . . . , cT ) + b

The additive term b, which can depend on the fixed parameters of the problem, is in-
cluded to deal with potential one-time “startup costs”.

The Work Function. We observe that the offline algorithm OPT need not play in a
randomized fashion because the optimal distributions pt will occur at the corners of the
simplex. Hence, computing OPT is not difficult, and can be reduced to a simple dynamic
programming problem. The elements of this dynamic program are fundamental to all of
the results in this paper, and we now define it precisely. Given a sequence c1, . . . , cT ,
we define the work function vector Wt at time t by the following recursive definition:

W0 := 〈0,∞, . . . ,∞〉 W t
i := min

j∈[n]

{
W t−1

j + δ(i, j) + ct
j

}

The work function value W t
i on cost sequence c1, . . . , ct is exactly the smallest to-

tal cost incurred by an offline algorithm for which pt = ei, i.e. one which must
be at location i at time t. Indeed, if we define W t

min := mini W t
i , then we see that

OPT(c1, . . . , cT ) = WT
min.

If we think of the work vector Wt as a function from [n] to R, where Wt(i) := W t
i ,

then it is easily checked that Wt is 1-Lipschitz with respect to the metric δ. That is,
for all i, j ∈ [n], |W t

i − W t
j | ≤ δ(i, j). We define a notion of a supported state which

occurs when this Lipschitz constraint becomes tight.

Definition 1. Given some work vector Wt with respect to a metric δ, the state i is
supported if there exists a j �= i such that W t

i = W t
j + δ(i, j). In this case, we say that

state i is supported by j.

Intuitively, when a state i becomes supported by j at time t, it has essentially become
“useless” for an offline algorithm. In such a case, the total cost of arriving at i after t
rounds is no more than the total cost of arriving at j plus the cost δ(i, j) of switching to
i. By a simple application of the triangle inequality, we may conclude that there is an
optimal offline algorithm that visits only unsupported states.

Throughout this text, when it is unnecessary, we will drop the superscript t from Wt,
W t

i , pt and pt
i.
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2 The Work-Based MTS Framework

We now develop a very general framework, characterized by a set of conditions and
assumptions on the algorithm and cost sequences, in which to develop techniques for
the randomized MTS problem. The only actual restriction we impose on the algorithm
is Condition 1, although we conjecture that this can be made without loss of optimality.
The remaining Conditions either follow from the latter, or can be made without loss of
generality as we describe.

Condition 1. The algorithm will be “work-based”, that is, we choose pt = p(Wt)
for some fixed function p regardless of the sequence of cost vectors that resulted in W.

This paper focuses entirely on the construction of work-based algorithms, where the
algorithm can forget about the sequence of cost vectors c1, . . . , ct and simply use Wt

to choose pt. This algorithmic restriction has been used as early as [1] and appears
elsewhere. It has not been shown, to the best of our knowledge, that this restriction is
made without sacrificing optimality. We conjecture this to be true.

Conjecture 1. There is an optimal randomized MTS algorithm that is work-based. In
other words, there is an optimal algorithm such that, after receiving c1, . . . , ct, the
probability pt need only depend on the resulting work vector Wt.

Strictly speaking, we need not settle this conjecture to proceed with developing al-
gorithms within this restricted class. However, if it were settled in the affirmative this
would suggest that the algorithmic design problem can be safely restricted to this smaller
class of algorithms. Indeed, by making this assumption we gain a number of other prop-
erties that we list below.

Condition 2. All cost vectors are “elementary”: every ct has the form αei for some
α > 0 and some i.

It has been shown that a worst-case adversary need only assign cost to a single state on
each round. Intuitively this is because, rather than revealing the costs of several states
at once to the player, an adversary can spread these costs out over a sequence of rounds
at no cost to OPT. This intuition can be more formally justified, and we refer the reader
to Irani and Seiden [5] for more details.

Condition 3. The algorithm will be “reasonable”: whenever Wi = Wj + δ(i, j) for
some j (i.e. i is a supported state) then it must be that pi(W) = 0.

To reiterate, this condition requires that the probability assigned to state i must vanish
whenever i is support within W. This is an unusual condition but it is required for any
work-based MTS algorithm and it follows from Condition 1. Whenever this property
is broken an adversary can induce an unbounded competitive ratio. If pi(W

t−1) > 0
and W t−1

i = W t−1
j + δ(i, j) for some j, then the adversary can select, say, the cost

vector ct = ei (or any positive scaling of ei). By construction, the work vector will
be unchanged, Wt = Wt−1, and hence the work-based algorithm will not change its
distribution, p(Wt) = p(Wt−1). However, the algorithm will pay at least pt · ct =
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pi(W
t) = pi(W

t−1) > 0. The adversary can repeat this process, leaving the work
vector (and hence the cost of OPT) unchanged, leading to an unbounded cost for the
algorithm. For more discussion, see Bartal et al [6].

Condition 4. The cost vectors will be “reasonable” as well: Given a current work
vector W, if a cost ct+1 = αei is received then α ≤ W t

j − W t
i + δ(i, j) for all j.

This assumption can be made, without loss of generality, when Condition 3 is satisfied.
More specifically, we can convert a sequence of elementary cost vectors which does
not satisfy this property to a sequence which does, without any change to the online
algorithm or offline cost OPT. Consider an elementary cost vector ct = αei for some
state i and some α > W t−1−1

j − W t
i + δ(i, j) for some j, and imagine converting this

to ct = α′ei defined by “rounding down”, α′ := W t−1
j −W t−1

i +δ(i, j). The resulting
work vector Wt′ after ct′ is identical to Wt after ct, and the algorithm’s distribution
p(Wt) is also identical. Furthermore, as a result of Condition 3, the servicing cost is 0,
i.e. p(Wt) · ct′ = p(Wt) · ct = 0. Hence, we may assume that α is already rounded
down and thus ct is reasonable. The observation was first shown by Fiat and Mendel
[9]. With this condition we arrive at a useful Lemma:

Lemma 2. Under the assumption that the sequence of cost vectors c1, . . . , ct is rea-
sonable, the work vector is precisely Wt = c1 + . . . + ct.

Condition 5. The algorithm will be “conservative”: Given a work vector W, whenever
a cost c = αei is received, then for each j �= i we have pj(W) ≤ pj(W +αei) – that
is, the probabilities at the locations not receiving cost can not decrease.

We include this condition to make the analysis easier, in particular because we may
now use the more convenient form of the Earth Mover Distance described in Lemma 1.
In general it is not strictly necessary to require an MTS algorithm to be conservative.
On the other hand, it is easy to show that it is a beneficial assumption, and it is used
throughout the literature.

2.1 Relationship to the Experts Setting

Before proceeding, let us show why the proposed framework brings us closer to a
well-understood problem, the “experts” setting [3]. Here, the algorithm must choose
a probability distributions pt ∈ Δn on each round t, and an adversary then chooses a
loss vector lt ∈ [0, 1]n. Let Lt =

∑t
s=1 ls. Then the algorithm’s goal is to minimize

∑T
t=1 pt · lt relative to the loss of the “best expert”, i.e. mini Lt

i.
Within our MTS framework, the story is quite similar. The algorithm and adversary

choose pt and ct on each round. By Lemma 2, WT =
∑T

t=1 ct, and the algorithm’s
goal is to pay as little as possible relative to mini W t

i .
These problems have a strong resemblance, yet there are several critical differences:

– The MTS algorithm has one-step lookahead: it can select pt with knowledge of ct

– An additional penalty distδ(pt−1,pt) for moving is added to the objective for MTS
– The algorithm must be “reasonable”, requiring that the probability pt

i must vanish
under certain conditions of Wt.
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While the first point would appear quite advantageous for MTS, the benefit is spoiled by
the latter two. In the expert setting we can ensure that the average cost of the algorithm
approaches the comparator mini Lt

i using an algorithm like Hedge, whereas in the MTS
setting a lower bound shows that this ratio is at least Ω(log n/ log2 log n) for the work
function comparator [11]. At a high level, this is because charging the algorithm for
adjusting its distribution and requiring that the probability vanishes on certain states
causes the algorithm to pay a huge amount in transportation.

In Section 3, we borrow some tools from the experts setting such as entropy regu-
larization and potential functions. Algorithms from the experts setting have been used
on the MTS problem before, most notably by [17]. Their approach is quite different
from the one we take. They imagine competing against a “switching expert” and mod-
ify known results developed by [18]. Their approach, while quite interesting, is not a
work-based algorithm and does not achieve an optimal bound.

2.2 Bounding Costs Using Potential Functions

We turn our attention to bounding the cost of a work-based MTS algorithm p on a
worst-case sequence of costs. First, we make a simple observation about work-based
algorithms that adhere to our framework. Given a work vector W, consider the cost to
the algorithm when vector c = εei is received and the work vector becomes W1 =
W + εei. The probability distribution transitions to p(W1), and the service cost is
p(W1) · c = εpi(W

1). By the conservative assumption, we compute the switching
cost by appealing to Lemma 1. Hence, the total cost is

p(W1) · c + distδ(p(W),p(W1)) = εpi(W
1)+

∑

j∈[n]\{i}
(pj(W

1)− pj(W))δ(i, j).

(1)
In the present work, we will consider designing algorithms with p(W) which are both
continuous and differentiable. With this in mind, we can take (1) a step further and let
ε → 0 to get the instantaneous increase in cost to the algorithm as we add cost to state i.
Using continuity, we see that W1 → W as ε → 0, which gives that the instantaneous

cost at W in the direction of ei as pi(W) +
∑

j∈[n]\{i}
∂pj(W)

∂Wi
δ(i, j).

Ultimately, we need to bound the total cost of the algorithm on any sequence. The
typical way to achieve this is with a potential function that maintains an upper bound on
the worst case sequence of cost vectors that results in the current W. There is a natural
“best” potential function Φ∗

p(w) for a given algorithm p, which we now construct.
For any measurable function I : R+ → [n], we can define a continuous path through

the space of work vectors by WI(s) =
∫ s

0
eI(α)dα. This is exactly the continuous ver-

sion of Lemma 2. The function I(s) specifies which coordinate of WI(s) is increasing
at time s. Let ρ(W) be the set of all functions I which induce paths starting at 0 that
lead to W. We now construct a potential function,

Φ∗
p(W) = sup

I∈ρ(W)

∫ T :WI(T )=W

0

⎛

⎝pI(s)(WI(s)) +
∑

j �=I(s)

∂pj(WI(s))
∂WI(s)

δ(i, j)

⎞

⎠ ds.
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This potential function measures precisely the worst case cost of arriving at a work
vector W.

Lemma 3. For any sequence of reasonable elementary vectors c1, c2, . . . , cT with
W =

∑
t c

t, the cost to algorithm p is no more than Φ∗
p(W). Furthermore, Φ∗

p(W)
is the supremal cost over all possible cost sequences {ct} that lead to W.

Proof. This fact is straightforward and we sketch the proof. For any W and any cost
vector c = εei (enough by Condition 2), the cost to the algorithm is expressed in
Equation (1). Now, instead of applying the cost all at once, consider applying it in a
continuous fashion, then the cost is

∫ ε

0

⎛

⎝pi(W + sei) +
∑

j �=i

∂pj(W + sei)
∂Wi

δ(i, j)

⎞

⎠ ds.

By Condition 5, pi(W + sei) ≥ pi(W + εei) for any s ∈ [0, ε] and hence this expres-
sion is an upper bound on Equation (1). In addition, for any sequence of ct’s, we can
construct an associated smooth path I that leads to W by integrating the cost smoothly
for each ct in the same fashion. But Φ∗

p(W) was defined as the supremum cost over
such paths. Thus, both the lower and upper bound follow.

Once we have Φ∗
p , the competitive ratio of p has the following characterization.

Lemma 4. The competitive ratio of algorithm p is the infimal value C such that
Φ∗

p(W) − CWmin is bounded away from +∞ for all W.

Certain work-based algorithms, which we will call shift-invariant algorithms, satisfy
p(W) = p(W + c1) for any W and any c.

Lemma 5. The competitive ratio of a shift-invariant algorithm is 1 · ∇Φ∗
p(W) for any

W.

Finding the optimal Φ∗
p for the algorithm p may be difficult. To prove an upper bound

on the competitive ratio, however, we need only construct a valid Φ. Precisely, define
Φ(W) to be valid with respect to the algorithm p if, for all W and all i, we have

∂Φ(W)
∂Wi

≥ pi(W) +
∑

j �=i

∂pj(W)
∂Wi

δ(i, j)

Lemma 6. Given any p and any valid potential Φ, C is an upper bound on the com-
petitive ratio if Φ(W) − CWmin is bounded away from +∞.

In the following Section, we show how to design algorithms and construct potentials
for the case of uniform metrics using regularization techniques.

3 Work-Based Algorithms via Regularization

We begin this Section by providing a general tool for the construction of work-based
MTS algorithms. We present a regularization approach, common in the adversarial on-
line learning community, which we modify to ensure the required conditions for the
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MTS setting. We present two algorithms for the uniform metric from this framework,
with associated potential functions, and we prove a bound on the competitive ratio of
each. We finish by discussing how to extend this approach to general metric spaces.

3.1 Regularization and Achieving Reasonableness

We now turn our attention to the problem of designing competitive work-based algo-
rithms for the case when δ is the uniform metric. The uniform metric is such that all
states are the same distance from each other–that is, we assume without loss of gener-
ality δ(i, j) = 1 whenever i �= j and 0 otherwise.

To obtain a competitive work-based algorithm, we need to find a function p and
construct an associated potential function Φ with the following properties:

– (Conservativeness) We require that
∂pj(W)

∂Wi
≥ 0 for any W and ∀j �= i

– (Reasonableness) The probability pi(W) must vanish whenever i is a supported
state for W, i.e. when Wi = Wj + δ(i, j) for some j

– (Valid Potential) ∀W, i, the potential Φ must satisfy ∂Φ(W)
∂Wi

≥ pi(W) − ∂pi(W)
∂Wi

Notice that the term −∂pi(W)
∂Wi

has replaced
∑

j �=i

∂pj(W)

∂Wi
δ(i, j) in the last expression.

These two quantities are equal when δ is the uniform metric, precisely because for any
j we have

∑
i

∂pi(W)
∂Wj

= 0 since
∑

i pi(W) = 1.

In order to obtain an algorithm with a low competitive ratio, we must construct a
slowly-changing p(W) and a valid potential Φ(W) that controls the motion of p(W)
as W varies in each direction. In other words, we would like to enforce a level of stabil-
ity in p(W). Stability is a central concept within both the batch-learning and the adver-
sarial online-learning literature. The most common and thoroughly analyzed approach
is to employ regularization. To describe this approach, let us return our attention to the
experts setting discussed in Section 2.1. Recall that, at time t, a distribution pt ∈ Δn

is to be chosen with knowledge of l1, . . . , lt−1. This can be achieved by solving the
following regularized objective,

pt = argmin
p∈Δn

(R(p) + λ
t−1∑

s=1

p · ls) (2)

where generally the “regularizer” R is selected as some smooth convex function and λ
is a learning parameter. How to select the correct regularizer is a major area of research,
but for the experts setting the most common is the negative of the entropy function,
R(p) :=

∑
i∈[n] pi log pi. This choice leads to the well-known exponential weights:

pt
i =

exp
(
−λ
∑t−1

s=1 lsi

)

∑
j exp

(
−λ
∑t−1

s=1 lsj

) (3)

Regularization in online learning appears in the literature at least as early as [19] and
[20], and more modern analyses can be found in [21] and [22].
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In this paper, we use the regularization framework to produce an algorithm p(W). It
is tempting to suggest solving the equivalent objective of Equation (2), where we treat
W as the cumulative costs; this leads to setting

p(W) = argmin
p

(R(p) + λp ·W). (4)

This approach can indeed guarantee stability with the correct R, and it’s easy to check
that the objective induces a conservative algorithm. Unfortunately, it does not enforce
the reasonableness property that we require. (It has been shown that an unreasonable
work-based algorithm must admit an unbounded competitive ratio [17].).

The question we are thus left with is, how can we adjust the objective to maintain
stability and ensure reasonableness? Recall, when δ is the uniform metric, the reason-
ableness property requires that pi(W) → 0 whenever 1 + Wj − Wi approaches 0 for
any j, or equivalently when 1 + Wmin − Wi → 0. To guarantee this behavior, we
propose replacing the term p ·W in Equation (4) with

∑
i pifi(W, λ) where the func-

tion fi(W, λ) will be a Lipschitz penalty: for any metric δ on [n] and any 1−Lipschitz
vector W with respect to δ, we say that fi(W, λ) is a Lipschitz penalty function if
fi(W, λ) → ∞ as minj

(
Wj − Wi + δ(i, j)

)→ 0. λ is a learning parameter that may
be tuned. Hence, we propose the following method to find p(W):

p(W) = argmin
p

(R(p) +
∑

i

pifi(W, λ)). (5)

For both algorithms in the following Section, we employ the entropy function for our
regularizer R(p).

3.2 Two Resulting Algorithms for the Uniform Metric

We will consider the following two Lipschitz penalty functions, and analyze the result-
ing algorithms:

(Alg 1) fi(W, λ) = −λ log(1 + Wmin − Wi)
(Alg 2) fi(W, λ) = − log(eλ(1+Wmin−Wi) − 1)

The analysis of both algorithms proceeds by solving the regularization function to find
pi as a function of W and then using the potential function technique of Section 2.2
to bound the switching and servicing costs regardless of which state receives cost. For
both, we separate the analysis into two cases: when increasing Wi causes Wmin =
minj Wj to increase, and when increasing Wi does not affect Wmin.

Theorem 1. Choosing R(p) :=
∑

i∈[n] pi log pi, and with Lipschitz penalty fi(W, λ)
= −λ log(1+Wmin−Wi), when λ = log n, we achieve an algorithm with competitive
ratio no more than e log n + 1 for the uniform metric.

Proof. We can solve (5) explicitly when R(·) is the negative entropy function. By com-
puting the Lagrangian, we arrive at

pi =
(1 + Wmin − Wi)

λ

∑n
j=1(1 + Wmin − Wj)λ
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We will show that each of the components of the cost of the algorithm is bounded by a
multiple of the following potential function:

Φ(W) = cWmin − log
n∑

i=1

(1 + Wmin − Wi)
λ

The parameters will be set so that c = e(log n − 1) + 1 and λ = log n. We will show
that these have been tuned optimally.

As discussed in the beginning of this section, we must show that pi − ∂pi

∂Wi
≤ ∂Φ

∂Wi

for all i. We will vary from that slightly and show that when i �= min, pi − ∂pi

∂Wi
≤

(1 + 1
λ ) ∂Φ

∂Wi
and if i = min then pmin − ∂pmin

∂Wmin
≤ ∂Φ

∂Wmin
. Combining these facts, the

competitive ratio will be upper bounded by (1 + 1
λ)c.

First, we will show that if i �= min, pi − ∂pi

∂Wi
≤ (1 + 1

λ) ∂Φ
∂Wi

.

pi −
∂pi

∂Wi

=
(1 + Wmin − Wi)

λ

∑
j(1 + Wmin − Wj)λ

+
λ(Wmin − Wi + 1)λ−1

(
∑

j(1 + Wmin − Wj)λ)2

≤ (1 + Wmin − Wi)
λ−1(λ + 1 + Wmin − Wi)∑

j(1 + Wmin − Wj)λ

≤ (λ + 1)(Wmin − Wi + 1)λ−1

∑
j(1 + Wmin − Wj)λ

=
λ + 1

λ

∂Φ

∂Wi

Next, we consider pmin − ∂pmin
∂Wmin

≤ ∂Φ
∂Wmin

. Notice that pmin = 1
Z where Z =

∑
j(1 +

Wmin − Wj)
λ. We have

pmin − ∂pmin

∂Wmin

=
1
Z

+
1

Z2

∂Z

∂Wmin

≤ 1 +
1

Z2

∂Z

∂Wmin

In addition, we see that ∂Φ
∂Wmin

= c − 1
Z

∂Z
∂Wmin

. In order to show that pmin − ∂pmin
∂Wmin

≤
∂Φ

∂Wmin
, using the above two statements it is equivalent to show that

1
Z

∂Z

∂Wmin

+
1

Z2

∂Z

∂Wmin

≤ c − 1

We now show this fact. First, let αj := 1 + Wmin − Wj . Now we need to maximize

(

1 +
1

1 +
∑

j �=min αλ
j

)
λ
∑

j �=min αλ−1
j

1 +
∑

j �=min αλ
j

This is maximized when αj = (λ−1
n−1 )1/λ and attains a max value of λ+1

λ (λ − 1)(n −
1)1/λ(λ− 1)−1/λ. This can be seen by first noting that it is maximized when all αj are
some value α and then taking the derivative with respect to α and setting it equal to 0.
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We note that as λ → ∞, (λ − 1)−1/λ → 1, as does λ+1
λ . Thus, we only concern

ourselves with the limit of (n − 1)1/λ. Let this quantity be L. By L’Hopital’s rule:

lim
n→∞ log L = lim

n→∞
log(n − 1)

λ
= lim

n→∞

1
n−1
dλ
dn

If we let λ = log n then we have 1
(n−1)/

1
n → 1. Thus, L = e and pmin − ∂pmin

∂Wmin
≤

∂Φ
∂Wmin

if c− 1 > (λ − 1)(n − 1)1/λ = e(log n − 1). Therefore, c = e(log n− 1) + 1.

Finally, we note that we have both requirements, pmin − ∂pmin
∂Wmin

≤ ∂Φ′
∂Wmin

and pi −
∂pi

∂Wi
≤ ∂Φ′

∂Wi
for Φ′ = (1 + 1

λ)Φ. Therefore, the total cost of this algorithm is bounded

by (1 + 1
λ)cOPT = (1 + 1

log n )(e(log n − 1) + 1)OPT ≤ (e log n + e + 1)OPT.

The previous algorithm demonstrates our analysis technique for a very simple and
natural Lipschitz-penalty function. However, it has a somewhat unsatisfying compet-
itive ratio of e logn. Even the very simple Marking algorithm has a better compet-
itive ratio of 2Hn. Next, we will show that a different Lipschitz penalty function,
fi(W, λ) = log(exp(λ(1 + Wmin − Wi)) − 1), produces an algorithm that achieves
the current best competitive ratio for the uniform MTS problem.

Theorem 2. If we employ the Lipschitz penalty fi(W, λ) = − log(exp(λ(1+Wmin −
Wi)) − 1) with λ = log n + 2 log log n, with R(·) the negative entropy as before, then
we achieve a competitive ratio of no more than log n + O(log log n) for the uniform
metric.

Proof. Solving the regularization problem when fi(W, λ) = log(exp(λ(1 + Wmin −
Wi)) − 1) results in

pi =
eλ(1+Wmin−Wi) − 1

∑
j eλ(Wmin−Wj+1) − 1

We will show that the following is a valid potential function:

Φ(W) = cWmin − 1 + λ

λ
log

n∑

i=1

(eλ(1+Wmin−Wi) − 1).

This analysis requires tuning the parameter λ, which we will do at the end.
In the same vein as the previous proof, we will show that pi − ∂pi

∂Wi
≤ ∂Φ

∂Wi
. We will

break this up into two steps, one where i �= min and when i = min.
Let us consider the case when i �= min. Let Z =

∑
j(e

λ(1+Wmin−Wj) − 1), the
normalization term of the above distribution. For any i �= min, we see that

pi −
∂pi

∂Wi

= pi +
λeλ(1+Wmin−Wi)

Z
+

1
Z2

∂Z

∂Wi

(eλ(1+Wmin−Wi) − 1) +
λ

Z
− λ

Z

= pi +
λ(eλ(1+Wmin−Wi) − 1)

Z
+

λ

Z
+ pi

1
Z

∂Z

∂Wi

= (1 + λ +
1
Z

∂Z

∂Wi

)pi +
λ

Z
≤ (1 + λ)pi +

λ

Z
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Notice that the final inequality follows since ∂Z
∂Wi

≤ 0.

Then, we consider ∂Φ
∂Wi

.

∂Φ

∂Wi

=
λ + 1

λ

1
Z

∂Z

∂Wi

=
λ + 1

λ

1
Z

(λeλ(Wmin−Wi+1))

=
1 + λ

Z
eλ(Wmin−Wi+1) +

1 + λ

Z
− 1 + λ

Z
= (1 + λ)(pi + 1/Z)

pi − ∂pi

∂Wi
≤ ∂Φ

∂Wi
follows immediately.

Now let i = min. Notice that pmin = eλ−1
Z , so we have

pmin − ∂pmin

∂Wmin

= pmin + (eλ − 1)
1

Z2

∂Z

∂Wmin

= pmin

(
1 +

1
Z

∂Z

∂Wmin

)

Furthermore,
∂Φ

∂Wmin

= c − 1 + λ

λ

1
Z

∂Z

∂Wmin

We compute

1
Z

∂Z

∂Wmin

=
λ

Z

∑

j �=min

eλ(Wmin−Wj+1) =
λ

Z

∑

j �=min

(eλ(Wmin−Wj+1) − 1) + λ
n − 1

Z

= λ

(
1 − pmin +

n − 1
Z

)

Putting the last three statements together, we can restate pmin − ∂pmin
∂Wi

≤ ∂Φ
∂Wmin

as

pmin

(
1 + λ

(
1 − pmin +

n − 1
Z

))
≤ c − (1 + λ)

(
1 − pmin +

n − 1
Z

)

n − 1
Z

(1 + λ + λpmin) + 1 + λ(1 − p2
min) ≤ c

Noting that Z ≥ eλ−1 and λpmin ≤ λ, it is equivalent to show that (2λ+1)n
eλ−1 +1+λ ≤ c.

Setting λ = log n + 2 log log n gives that the first term is o(1), and we can then set
c = λ + 1 + o(1). Thus the competitive ratio of this algorithm is log n + O(log log n),
the best achieved thus far.

3.3 Extending to General Metrics

It has become relatively well-established in the online learning literature that the nega-
tive entropy function is an ideal regularizer when we want to control the L1-stability of
our hypothesis, which is the relevant distance function for distributions over a uniform
metric space. On the other hand, notice that the algorithmic template we propose in (5)
does not rely on the uniform metric, and can be posed in general. Constructing algo-
rithms for arbitrary metrics has been the biggest challenge for the MTS problem, and
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we still have a gap in the minimax competitive ratio between Ω(log n) and O(log2 n).
Unfortunately, extending our results to general metrics does not lead to an algorithm
with an O(log n)-competitive ratio.

For other metrics, it is clear that entropy is not at all the correct regularizer. Instead,
what is needed is a regularization function that controls the stability of p with respect
to the norm induced by the Earth Mover Distance distδ(·, ·). It would be of particular
interest if such a function existed and could be constructed.

Conjecture 2. For any metric δ on [n], there is some regularization function R(·) such
that the algorithm resulting from Equation (5) is O(log n)-competitive.

As an example, in the case of the weighted star metric, which is slightly more general
than the uniform metric, we conjecture that the weighted entropy [23] is the correct
choice of regularizer. We note that the resulting algorithm is similar in flavor to the
MTS algorithm of Bansal et al [13], which is known to achieve an O(log n) algorithm
for this metric.

4 Conclusions and Open Problems

We have introduced a framework for developing and analyzing algorithms for the metri-
cal task system problem. This framework presupposes that an optimal algorithm that is
work-based exists, and we conjecture that this is this the case. Given this framework we
are able to use the popular entropy regularization approach to develop state-of-the-art
algorithms. We believe this system gives good insight into how to develop algorithms
for the general metric case.

Our work leaves open several important questions. The most obvious are the answers
to our conjectures - is it true that assuming that the algorithm will be work vector based
does not preclude optimality? All of the current algorithms for general metrics rely on
embedding the metric into a hierarchical search tree and then using MTS algorithms for
this metric space and none are known to be based on the work vector.

There is also an open question with regards to the regularization approach. What
is the correct regularization function for general distance metrics? We believe that an
algorithm for the general metric with even a polylogn bound on the competitive ratio
that is worse than the current results achieved by metric embedding would be interesting
due to its potential relative simplicity.
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