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Highlights of Our Work

# No new SAT solvers are proposed

#® We improve performance of existing
complete SAT solvers by preprocessing

# Evaluate on carefully chosen SAT benchmarks
= ignore easy benchmarks

= only worry about benchmarks with symmetries
(but the symmetries may not be given!)

= show applicability to chip layout (200x speed-ups)
and derive new hard SAT benchmarks

= show asymptotic improvements




Outline
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# Symmetries and permutations
s Compact representations of symmetries
= Computational group theory

# Symmetries of CNF instances
= Detection via Graph Automorphism
m Syntactic versus semantic symmetries
= Using symmetries to speed up search

#® Opportunistic symmetry detection
# Empirical results




Symmetrles and Permutatlons
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not a symmetry symmetry
@ Symmetries of the triangle:
1-2,2-3,3->1 (123)

\
Cycles
@A@ 1-3, 322,21 (132) must be
1-2,2-1,3->3 (12) disjoint

151,253,352 (23) 72—

1-3, 3—1,2-2 (13)
1-1, 2—2, 3—3 “do nothing”




Symmetries and Permutations (2)

apply (123) and then again (123): get (132)
apply (123) and then (12) : get (23)
all non-trivial symmetries
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are products of (123) and (12) - “generators”
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Symmetries and Permutations (3)

# [dea: represent symmetries of an o
by permutations that preserve the o

Dject
nject

# Composition of symmetries is mode

by composition of permutations
s Composition is associative
= Every symmetry has an inverse

ed

= The do-nothing symmetry is the identity

# This enables applications of group t

heory
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Compact Representations

#® Represent the group of all symmetries
= Do not list individual symmetries
s List generating permutations (generators)

# Elementary group theory proves:
» If redundant generators are avoided,

= A group with A/ elements can be represented
by at most /og,(/V) generators

#® Guaranteed exponential compression




Compact Representations (2)

#® Sometimes can do better than /og,(N)
# E.g., consider the group S, of

all k/ permutations of 1..k

= Can be generated by (12) and (123..k)

= Or by (12), (23), (34),..., (k-1 k)
# To use this guaranteed compression,

we need algorithms
in terms of permutation generators
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Computational Group Theory

# Algorithms for group manipulation
in terms of generators are well known

= Published by Sims, Knuth, Babai and others

m Especially efficient for permutation groups

#® High-quality implementations available

= The GAP package — free, open-source
(GAP="Groups, Algebra, Programming”)

= The MAGMA package — commercial




/A

Finding Symmetries of Graphs

#® A symmetry (automorphism) of a graph
» Permutation of vertices A

that maps edges to edges D B
@ Additional constraints @.@

= Vertex colors (labels): integers
= Every vertex must map into a vertex of same color

# Computational Graph Automorphism
= Given a graph
= Find generators of its group of symmetries
= GraphAuto NP, and is believed to ¢ P and ¢ NPC
= Linear average-case runtime (but that’s irrelevant!)
= Algorithms implemented in GAP(GRAPE(NAUTY))
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Symmetries of CNF Formulae

#Permutations of variables
that map clauses to clauses

= E.g., (a+b+c)(d+e+f)

has one non-trivial symmetry (ad)(be)(cf)
= Considering single swaps only is not enough
#Phase changes, e.g., a—a/,
and compositions with permutations

s E.g., (a+b+c)(d+e'+f")
has one non-trivial symmetry (ad)(be")(cf’)




Reduction to Graph Automorphism

#® CNF formula — colored graph
= Linear time and space

# Find graph’s [colored] symmetries
= \Worst-case exponential time

#® Interpret graph symmetries found
as symmetries of the CNF formula

= Permutational symmetries
= Phase-shift symmetries




Reductlon to Graph Automorphism

" @ Vertices of two colors: clauses and vars
= One vertex per clause, two per variable

# Edges of three types: (i) incidence,
(ii) consistency, and (iii) 2-literal clauses

Clauses A (-1+2+3),B(1+-2+-3),C(2+3] > 1 2 3] F
O0O0| 1
001 1
O10( O
011 O
100 O
101 1
110 O
111 1




yntactic and Semantic Symmetries
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# CNF formula versus Boolean function

# Syntactic symmetries
= symmetries of representation

# Semantic symmetries of the object

= E.g., permutations and negations of variables
that preserve the value of the function
for all inputs

#® Any syntactic symmetry is also semantic
= but not vice versa, example: (a)(a”)(a+b)




Speeding up SAT Search
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@ Search space may have symmetries
= May have regions that map 1:1
= This makes search redundant

# Ideas for speed-ups
= Consider equivalence classes under symmetry

= Pick a representative for each class
= Search only one representative per class

# This restricted search is < to original
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Symmetry-breaking Predicates

# To restrict search
s Add clauses to the original CNF formula
(“symmetry-breaking” clauses)

= They will pick representatives of classes
and restrict search

# Our main task is to find those clauses

= Every permutation — group of clauses
(a “symmetry-breaking” predicate)

= Use only generators of semantic symmetries




Construction of S.-b. Predicates
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& Earlier work:

= By Crawford, Ginsberg, Roy and Luks (92,96)
= Not based on cycle notation for permutations

#® Our construction is more efficient
m Every cycle considered separately

= In practice almost all cycles are 2- or 3-cycles
» Two types of 2-cycles: (aa’) and (ab)
* Symm.-breaking predicates: (a) and (a’+b) resp.
= For multiple cycles
* Procedure to chain symmetry-breaking predicates
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Details: Individial Cycles

# Use an ordering of all variables (arbitrary)
= T0 prevent transitivity violations: (a+b")(b+c’)(c+a)

#® Symmetry-breaking predicate for cycle (ab):

= (a=b) aka (a<b), if a precedes b in the ordering

= Think of partial variable assignments to b and a
+ Must choose one from 01 and 10

# S.-b. predicate for cycle (abc) is (a<b<c)
= For 3-var partial assignments, can cycle all Os to front

# For longer cycles, still can improve upon CGRL
# Does ordering affect overall performance?




Details: Multiple Cycles(1)
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# Solution space reduction
= By 2x when (a) is added to break cycle (aa’)
= Still by 2x if permutation has cycles (aa’) and (bb”)
= By 4/3x when (a'+b) is added to break cycle (ab)
= What if a permutation has cycles (ab) and (cd) ?
= By 2x when (a<b<c) is added to break (abc)

# Suppose you have cycles (aa”) and (uvt)
= Adding both predicates cuts solution space by 4x

#® Rule of thumb: after breaking a 2-cycle,
symmetry-break the square of the permutation




Details: Multiple Cycles(2)
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# Rule of thumb: after breaking a 3-cycle,
symmetry-break the cube of the permutation

# What if we have both (xy) and (uv) ?

= Squaring will kill the second cycle, so don’t square!
Look at partial assignments for x,y: 00, 01, 10 and 11
For 10 or 01, (x'+y) is all we can do
For 00 or 11, can add (u’+v)
Adding (x<y) and (x=y)=(u<v)
cuts the solution space by 8/5x (better than 4/3x)
#® For 3-cycles, add (x=y=z)=(u<v<w) or the like
#® For multiple cycles ((x=y=z)&(a=b))=(u<v), etc




Discussion
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# We detect syntactic symmetries only

= If more semantic symmetries available,
can use them in the same way

#® Symmetry-detection can take long time
= Sometimes longer than solving SAT

# In some cases the only symmetry is trivial
= Symm. detection is often fast in these cases

#® Symmetry-breaking using generators only
is not exhaustive (remark by CGRL)

= But makes symmetry-breaking practical (our result)
= Pathological cases are uncommon:why?(future work)
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Evaluation and Benchmarks

# Most of DIMACS benchmarks are
easy for existing solvers

#® \We focus on difficult CNF instances

= Pigeon-hole-n (PHP-n), Urgquhart, etc.
#® Observe that PHP-n can appear in apps
#® EDA layout apps (routing) — symmetry

#® \We generate satisfiable and unsatisfiable CNF
instances related to PHP-n




FPGA Routing Benchmarks

T
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Global Routing Benchmarks

@ Construct difficult grid-routing
instances by “randomized flooding”

#® Then convert to CNF

tracks
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Empirical Results - Chaff

Plain  Time- Symmetries Speedup
Instance SU #v  #CL | Chaff  out |Finding Number |#generators|Search| Total Search
Sec % | sec of |cycles Time only
hole7 U 56 204 037 0% 0.1 2.03E+08 al 13  0.01] 332 36.50
hole8 U 72 297 127 0%| 0.07 1.46E+10 al 15  0.01] 15.22 94.15
hole9 U 90 415 379 0% 0.1 1.32E+12 al 17 0.02] 32.00 204.97
hole10 U 110 561 2244  0%| 0.15 1.45E+14 al 19  0.02| 130.07 997.18
hole11 Uu 132 738 21273 0%| 0.13 1.91E+16 al 21 0.03[1329.54 7090.88
hole12 U 156 949 1000 100%| 0.24 2.98E+18 al 23  0.04[3597.12  26315.79
Urg3_5 U 46 470 23244 10%]| 0.48 5.37E+08 al 29  0.00| 484.16  2.32E+06
Urgd 5 U 74 694 25001 25%| 1.35 8.80E+12 al 43  0.00] 185.18  2.50E+06
Urg5_5 U 121 1210 1000 100%|( 13.15 4.72E+21 al 72 000 76.05  1.00E+07
Urg6_5 U 180 1756 1000 100%| 62.93 6.49E+32 al 109  0.00f 15.89  1.00E+07
urq7 5 U 240 2194 1000 100%| 176.62 1.12E+43 al 143  0.00f 566  1.00E+07




Empirical Results - Chaff

S
Time
Plain - Symmetries Speedup
Instance SIU | #V #CL Chaff out Finding Number | #generators | Search | Total Search
sec % sec of cycles Time only
grout3.3-01 S 864 7592 19.01 0% 479 8.71E+09 10 26 0.67 3.48 28.37
grout3.3-03 S 960 9156 44.35 0% 8.94 6.97E+10 10 29 0.40 4.75 110.89
grout3.3-04 S 912 8356 19.36 0% 6.81 2.61E+10 10 27 0.36 2.70 53.79
grout3.3-08 S 912 8356 21.30 0% 7.14 3.48E+10 10 28 0.67 2.73 31.80
grout3.3-10 S 1056 10862 28.18 0% 10.65 3.48E+10 10 28 0.85 2.45 33.15
chnl10x11 U 220 1122 22.17 0% 0.45 4.20E+28 all 39 0.11 39.91 210.13
chnl10x12 U 240 1344 81.88 0% 0.61 6.04E+30 all 41 0.12 | 111.63 663.00
chnl10x15 U 300 2130 | 657.61 25% 1.28 4.50E+37 all 47 0.17 | 454.78 3961.49
chnl11x12 U 264 1476 | 207.37 0% 0.75 7.31E+32 all 43 0.15 | 231.31 1415.51
chnl11x13 U 286 1742 | 788.32 20% 1.08 1.24E+35 all 45 0.16 | 633.45 4792.24
chnl11x20 U 440 4220 1000 100% 4.4 1.89E+52 all 59 0.31 | 21249 3267.97




Empirical Results - Chaff
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Time
Plain - Symmetries Speedup
Instance o
S/U | #V #CL Chaff out Finding Number | #generators | Search | Total Search
sec % sec of cycles Time only
fpgalO_8 S 120 448 7.56 0% 0.63 6.00E+71 all 62 0.05 11.15 157.56
fpgalO_9 S 135 549 3.80 0% 0.88 6.33E+77 all 68 0.03 4.16 113.39
fpgal2_11 S 198 968 | 694.00 50% 3.76  7.18E+77 all 95 0.06 | 181.63 11377.05
fpgal2_12 S 216 1128 | 80.20 0% 5.31 7.44E+77 all 104 0.13 14.74 616.92
fpgal2_8 S 144 560 | 246.70 10% 1.23 8.41E+77 all 72 0.08 | 188.39  3103.14
fpgal2_ 9 S 162 684 | 885.00 80% 1.7 2.25E+77 all 79 0.05 | 504.56 16388.89
fpgal3_9 S 176 759 | 550.00 85% 2.57 2.56E+77 all 84 0.06 | 208.81  8593.75
fpgal3_10 S 195 905 1000 100% 4.04 5.76E+77 all 93 0.08 | 242.60 12195.12
fpgal3_12 S 234 1242 1000 100% 6.9 8.85E+77 all 110 0.08 | 143.23 12195.12




Empirical Results - Chaff

S
Plain Time- Symmetries Speedup
Instance S/U #V #CL Chaff out Finding Number | #generators Search | Tot Search
sec % sec of cycle Time only
2dIx_ca_mc U 3250 24640 6.54 0% 38.36 9.36E+77 10 66 6.30 | 0.15 1.04
2pipe U 892 6695 2.08 0% 10.74 2.26E+45 10 38 1.56 | 0.17 1.33
2pipe_1 000 | U 834 7026 2.55 0% 9.37 8.00E+00 10 3 1.80 | 0.23 1.41
2pipe_2 000 | U 925 8213 3.43 0% 11.14 3.20E+01 10 5 2.82 | 0.25 1.22
3pipe U 2468 27533 36.44 0% 463.57 7.29E+77 10 85 19.65 | 0.08 1.85
2dIx_ca_mc U 3250 24640 6.54 0% 3.17 2.34E+77 10 64 542 | 0.76 1.21
2pipe U 892 6695 2.08 0% 10.47 2.26E+45 10 38 1.30 | 0.18 1.60
2pipe_1 000 | U 834 7026 2.55 0% 9.02 8.00E+00 10 3 1.80 | 0.24 1.41
2pipe_2 000 | U 925 8213 3.43 0% 11.09 3.20E+01 10 5 2.80 | 0.25 1.23
3pipe U 2468 27533 36.44 0% 3.63 1.42E+77 10 78 36.20 | 0.91 1.01
4pipe U 5237 80213 | 337.61 0% 9.32 1.03E+78 10 142 334.00 | 0.98 1.01
5pipe U 9471 195452 | 325.92 0% 29.42 3.64E+78 10 227 290.50 | 1.02 1.12




Plain Time- Symmetries Speedup
Instance |S/U #V #CL Chaff out |Finding Number |#generators| Search Total Search
sec % sec of cycles Time only
grout3.3-01 |S 864 7592 19.01 0% 4,79  8.71E+09 10 26 0.67 3.48 28.37
grout3.3-03 |[S 960 9156 44.35 0% 8.94 6.97E+10 10 29 0.40 4.75 110.89
grout3.3-04 |S 912 8356 19.36 0% 6.81 2.61E+10 10 27 0.36 2.70 53.79
grout3.3-08 |S 912 8356 21.30 0% 7.14  3.48E+10 10 28 0.67 2.73 31.80
grout3.3-10 |S 1056 10862 28.18 0%| 10.65 3.48E+10 10 28 0.85 2.45 EENMIS
chnl10x11 U 220 1122 22.17 0% 0.45 4.20E+28 all 39 0.11 39.91 210.13
chnl10x12 U 240 1344 81.88 0% 0.61 6.04E+30 all 41 0.12| 111.63 663.00
chnl10x15 U 300 2130 657.61 25% 1.28 4.50E+37 all 47 0.17| 454.78 3961.49
chnll11x12 U 264 1476 207.37 0% 0.75  7.31E+32 all 43 0.15| 231.31 1415.51
chnl11x13 U 286 1742 788.32  20% 1.08 1.24E+35 all 45 0.16| 633.45 4792.24
chnl11x20 U 440 4220 1000 100% 4.4  1.89E+52 all 59 0.31| 212.49 3267.97
fpgalO_8 S 120 448 7.56 0% 0.63 6.00E+71 all 62 0.05 11.15 157.56
fpgalO_9 S 135 549 3.80 0% 0.88 6.33E+77 all 68 0.03 4.16 113.39
fpgal2_11 S 198 968 694.00 50% 3.76  7.18E+77 all 95 0.06| 181.63 11377.05
fpgal2_12 S 216 1128 80.20 0% 5.31 7.44E+77 al 104 0.13 14.74 616.92
fpgal2_8 S 144 560 246.70 10% 1.23  8.41E+77 all 72 0.08| 188.39 3103.14
fpgal2_9 S 162 684 885.00 80% 1.7 2.25E+77 all 79 0.05| 504.56 16388.89
fpgal3_9 S 176 759 550.00 85% 257 2.56E+77 all 84 0.06| 208.81 8593.75
fpgal3_10 S 195 905 1000 100% 4.04  5.76E+77 all 93 0.08| 242.60 12195.12
fpgal3_12 S 234 1242 1000 100% 6.9 8.85E+77 al 110 0.08| 143.23 12195.12
2dIx_ca_ mc |U 3250 24640 6.54 0%]| 38.36 9.36E+77 10 66 6.30 0.15 1.04
2dIx_ca_ mc |U 3250 24640 6.54 0% 3.17 2.34E+77 10 64 5.42 0.76 1.21
2pipe U 892 6695 2.08 0%]| 10.47 2.26E+45 10 38 1.30 0.18 1.60
2pipe_1 ooo |U 834 7026 2.55 0% 9.02 8.00E+00 10 3 1.80 0.24 1.41
2pipe_2 ooo |U 925 8213 3.43 0%]| 11.09 3.20E+01 10 5 2.80 0.25 1.23
3pipe U 2468 27533 36.44 0% 3.63  1.42E+77 10 78 36.20 0.91 1.01
4pipe U 5237 80213 337.61 0% 9.32 1.03E+78 10 142 334.00 0.98 1.01
5pipe U 9471 195452 325.92 0%]| 29.42 3.64E+78 10 227 290.50 1.02 1.12
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Domain-specific
Symmetry-Breaking Predicates

# We looked at symmetry generators
for global routing benchmarks

#® Those symmetries were permutations

of routing tracks

#® Symmetry-breaking clauses can be
added when converting to CNF

m Serious speed-up for Chaff in all cases
# No symmetries left after that




Fast Symmetry Detection
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B

A-(1+3+5)
B (-5+ 8+ 10)
C(-5+6+7)
D(5+-6+-7)




Conclusions
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# Pre-processing speeds up SAT solvers
on difficult instances with symmetries

= Strong empirical results on new and old BMs

# Improved constructions
= Reduction to graph automorphism

= Symmetry-breaking predicates
» Cycle-based construction
+ Using generators only

# Many important questions not answered
# Significant on-going work







