On Proof Systems Behind Efficient SAT Solvers

DoRon B. Motter and Igor L. Markov University of Michigan, Ann Arbor

Motivation

- Best complete SAT solvers are based on DLL
 - □ Runtime (on unSAT instances) is lower-bounded by the length of resolution proofs
 - Exponential lower bounds for pigeonholes
- Previous work: we introduced the Compressed Breadth-First Search algorithm (CBFS/Cassatt)
 - Empirical measurements: our implementation of Cassatt spends Θ(n⁴) time on PHP_nⁿ⁺¹
- This work: we show analytically that CBFS refutes pigeonhole instances PHP_nⁿ⁺¹ in poly time
 - □ Hope to find a proof system behind Cassatt

Empirical Performance

Related Work

- We are pursuing novel algorithms for SAT facilitated by <u>data structures with compression</u>
 - □ Zero-suppressed Binary Decision Diagrams (ZDDs)
- Existing algorithms can be implemented w ZDDs
 - ☐ The DP procedure: Simon and Chatalic, [ICTAI 2000]
 - □ DLL: Aloul, Mneimneh and Sakallah, [DATE 2002]
- We use the union-with-subsumption operation
- Details of the Cassatt algorithm are in
 - □ Motter and Markov, [ALENEX 2002]

Outline

- Background
- Compressed BFS
 - □ Overview
 - □ Example
 - □ Algorithm
- Pigeonhole Instances
- Outline of Proof
 - □ Some bounds
- Conclusions and Ongoing Work

Background

Background: Terminology

- Given partial truth assignment
- Classify all clauses into:
 - Satisfied
 - At least one literal assigned true
 - □ Violated
 - All literals assigned, and not satisfied
 - □ Open
 - 1+ literal assigned, and no literals assigned true
 - Open clauses are activated but not satisfied
 - Activated
 - Have at least one literal assigned some value
 - □ Unit
 - Have all but one literal assigned, and are open
- A <u>valid</u> partial truth assignment ⇔ <u>no violated clauses</u>

Open Clauses

- Straightforward Breadth-First Search
 - □ Maintain all valid partial truth assignments of a given depth; increase depth in steps
- Valid partial truth assignments
 - → sets of open clauses
 - □ No literals assigned ⇒ Clause is not activated
 - □ All literals assigned ⇒ Clause must be satisfied
 - Because: assignment is valid ⇒ no clauses are violated
- "Cut" clause = some, but not all literals assigned
 - ☐ Must be either <u>satisfied</u> or <u>open</u>
 - ☐ This is determined by the partial assignment

Binary Decision Diagrams

- BDD: A directed acyclic graph (DAG)
 - □ Unique source
 - □ Two sinks: the **0** and **1** nodes
- Each node has
 - □ Unique label
 - □ Level index
 - □ Two children at lower levels
 - T-Child and E-Child
- BDDs can represent Boolean functions
 - Evaluation is performed by a single DAG traversal
- BDDs are characterized by reduction rules
 - □ If two nodes have the same level index and children
 - Merge these nodes

Zero-Supressed BDDs (ZDDs)

- Zero-supression rule
 - ☐ Eliminate nodes whose T-Child is **0**
 - □ No node with a given index ⇒ assume a node whose T-child is 0
- ZDDs can store a collection of subsets
 - □ Encoded by the collection's characteristic function
 - \square **0** is the empty collection \varnothing
 - \square 1 is the one-collection of the empty set $\{\emptyset\}$
- Zero-suppression rule enables compact representations of sparse or regular collections

Compressed BFS: Overview

- Maintain collection of subsets of open clauses
 - □ Analogous to maintaining all "promising" partial solutions of increasing depth
 - □ Enough information for BFS on the solution tree
- This collection of sets is called the front
 - □ Stored and manipulated in compressed form (ZDD)
 - □ Assumes a clause ordering (global indices)
 - Clause indices correspond to node levels in the ZDD
- Algorithm: expand one variable at a time
 - When all variables are processed two cases possible
 - The front is \varnothing \Rightarrow Unsatisfiable
 - The front is $\{\emptyset\}$ ⇒ Satisfiable

Compressed BFS

```
Front ← 1  # assign {∅} to front
foreach v ∈ Vars
  Front2 ← Front
  Update(Front, v ← 1)
  Update(Front2, v ← 0)
  Front ← Front ∪<sub>s</sub> Front2
if Front == 0 return Unsatisfiable
if Front == 1 return Satisfiable
```


$$(b+c+d)(-b+c+-d)(a+c+d)(a+b+-c)(-a+-c+d)(-a+b+d)$$
1 2 3 4 5

- Process variables in the order {a, b, c, d}
- Initially the front is set to 1
 - ☐ The collection should contain one "branch"
 - □ This branch should contain no open clauses $\Rightarrow \{\emptyset\}$

w

$$(b+c+d)(-b+c+-d)(a+c+d)(a+b+-c)(-a+-c+d)(-a+b+d)$$
1 2 3 4 5

- Processing variable a
 - □ Activate clauses {3, 4, 5, 6}
 - Cut clauses: {3, 4, 5, 6}
 - \Box a = 0
 - Clauses {3, 4} become open
 - □ a = 1
 - Clauses (5, 6) become open
- ZDD contains { {3, 4}, {5, 6} }

ye.

$$(b+c+d)(-b+c+-d)(a+c+d)(a+b+-c)(-a+-c+d)(-a+b+d)$$
1 2 3 4 5

- Processing variable b
 - □ Activate clauses {1, 2}
 - Cut clauses: {1, 2, 3, 4, 5, 6}
 - \Box b = 0
 - No clauses can become violated
 - □ b is not the end literal for any clause
 - Clause 2 is satisfied
 - □ Don't need to add it
 - Clause 1 first becomes activated

$$(b+c+d)(-b+c+-d)(a+c+d)(a+b+-c)(-a+-c+d)(-a+b+d)$$
1 2 3 4 5

- Processing variable b
 - □ Activate clauses {1, 2}
 - Cut clauses: {1, 2, 3, 4, 5, 6}
 - \Box b = 1
 - No clauses can become violated
 - □ b is not the end literal for any clause
 - Existing clauses 4, 6 are satisfied
 - Clause 1 is satisfied
 - □ Don't need to add it
 - Clause 2 first becomes activated

$$(b+c+d)(-b+c+-d)(a+c+d)(a+b+-c)(-a+-c+d)(-a+b+d)$$
1 2 3 4 5

- Processing variable b
 - □ Activate clauses {1, 2}
 - Cut clauses: {1, 2, 3, 4, 5, 6}
 - \Box b = 1
 - No clauses can become violated
 - □ b is not the end literal for any clause
 - Existing clauses 4, 6 are satisfied
 - Clause 1 is satisfied
 - □ Don't need to add it
 - Clause 2 first becomes activated

NA.

$$(b+c+d)(-b+c+-d)(a+c+d)(a+b+-c)(-a+-c+d)(-a+b+d)$$
1 2 3 4 5

- Processing variable c
 - ☐ Finish clause 4
 - Cut clauses: {1, 2, 3, 5, 6}
 - \Box c = 0
 - No clauses become violated
 - □ c ends 4, but c=0 satisfies it
 - Clauses 4,5 become satisfied
 - No clauses become activated

$$(b+c+d)(-b+c+-d)(a+c+d)(a+b+-c)(-a+-c+d)(-a+b+d)$$
1 2 3 4 5 6

- Processing variable c
 - ☐ Finish clause 4
 - Cut clauses: {1, 2, 3, 5, 6}
 - \Box c = 1
 - Clause 4 may be violated
 - □ If c appears in the ZDD, then it is still open
 - Clauses 1, 2, 3 are satisfied
 - No clauses become activated

5

6

$$(b+c+d)(-b+c+-d)(a+c+d)(a+b+-c)(-a+-c+d)(-a+b+d)$$
1 2 3 4 5

- Processing variable d
 - ☐ Finish clauses {1, 2, 3, 5, 6}
 - Cut clauses: {1, 2, 3, 5, 6}
 - \Box d = 0, d=1
 - All clauses are already satisfied
 - Assignment doesn't affect this
 - Instance is satisfiable

5

6

Compressed BFS: Pseudocode

```
CompressedBfs(Vars, Clauses)
     front \leftarrow 1
     for i = 1 to |Vars| do
               front' ← front
               //Modify front to reflect x_i = 1
               Form sets U_{xi,1}, S_{xi,1}, A_{xi,1}
front \leftarrow front \cap 2<sup>Cut - Uxi,1</sup>
               front \leftarrow ExistAbstract(front, S_{xi,1})
               front \leftarrow front \otimes A<sub>xi,1</sub>
               //Modify front' to reflect x_i = 0
               Form sets U_{xi,0}, S_{xi,0}, A_{xi,0} front' \leftarrow front' \cap 2<sup>Cut - Uxi,0</sup>
               front' \leftarrow ExistAbstract(front', S_{xi,0})
               front' \leftarrow front' \otimes A<sub>xi 0</sub>
               //Combine the two branches via Union with Subsumption
               front \leftarrow front \cup_s front'
      if front = 0 then
               return Unsatisfiable
     if front = 1 then
               return Satisfiable
```

198

The Instances PHP_nⁿ⁺¹

- Negation of the pigeonhole principle
 - □ "If n+1 pigeons are placed in n holes then some hole must contain more than one pigeon"
- Encoded as a CNF
 - □ n(n+1) Boolean variables
 - v_{ii} represents that pigeon i is in hole j
 - □ n+1 "Pigeon" clauses: $(v_{i1} + v_{i2} + ... + v_{in})$
 - Pigeon i must be in some hole
 - □ n(n+1) "Pairwise Exclusion" clauses (per hole): $(\overline{v_{i1j}} + \overline{v_{i2j}})$
 - No two pigeons can be in the same hole
- Unsatisfiable CNF instance
- Use the "hole-major" variable ordering

$$\ \ \, \square \ \, \{x_1,\,x_2,\,\ldots\,x_{n(n+1)}\} \Longleftrightarrow \{v_{11},\,v_{21},\,\ldots,\,v_{(n+1)1},v_{12},v_{22},\,\ldots\}$$

The Instances PHP_nⁿ⁺¹

Outline of Proof

- Bound the size of the ZDD-based representation throughout execution
 - □ With most ZDD operations:
 - $h = zdd_op(ZDD f, ZDD g)$
 - h is built during a traversal of ZDDs f, g
 - The execution time is bounded by poly(|f|, |g|)
- Do not consider all effects of reduction rules
 - ☐ These obscure underlying structure of the ZDD
 - □ Reduction rules can only eliminate nodes
 - This will still allow an upper bound on ZDD size

Outline of Proof

- Main idea: Bound the size of the partially reduced ZDD
 - ☐ First compute a simple bound between "holes"
 - □ Prove that the size does not grow too greatly inside "holes"
- Show the ZDD at given step has a specific structure

Bounds Between H_k

- **Lemma**. Let $k \in \{1, 2, ..., n\}$. After assigning values to variables $x_1, x_2, ..., x_{k(n+1)}$, we may satisfy at most k of the n+1 pigeon clauses.
 - □ Valid partial truth assignment to the first k(n+1) variables
 - ⇒Must set only one variable in H_i true, for each i<k.

For CBFS

- □ Remove subsumed sets
- ⇒ front contains all sets of (n+1-k) pigeon clauses
- How many nodes does this take?

ZDD of all k-Element Subsets

- To reach 1 ⇒ function must select the T-Child on exactly k indices
 - \square Less than k \Rightarrow Traverse to 0
 - □ More than k ⇒ Zero-Supression Rule
- Contains (n+1-k)k nodes
- ZDDs are a canonical representation
 - □ When this is encountered in CBFS, we are assured of this structure
 - \Rightarrow CBFS uses (n+1-k)(k+1) nodes after variable $x_{k(n+1)}$

The front within H_k

- After variable $x_{k(n+1)+i}$ the ZDD contains (i+1) "branches"
- Main branch corresponds to all $x_{k(n+1)+1}$, ..., $x_{k(n+1)+1}$ false
- i+1 other branches correspond to one of $x_{k(n+1)}$ + 1, ..., $x_{k(n+1)+i}$ true
- Squares correspond to ZDDs of all subsets of a given size
- Can show this structure is correct by induction
- Bound comes from counting nodes in this structure

Analytical vs. Empirical

Conclusions and Ongoing Work

- Understanding why CBFS can quickly solve pigeonhole instances depends on recognizing structural invariants within the ZDD
- We hope to understand exactly what proof system is behind CBFS
- We hope to improve the performance of CBFS
 - DLL solvers have been augmented with many ideas (BCP, clause subsumption, etc)
 - These ideas may have an analogue with CBFS giving a performance increase

Thank you!!!

The Utility of Subsumption

- Cassatt empirically solves pigeonhole instances in O(n⁴) without removing subsumptions
- Without subsumption removal
 - Instead of ZDD's for all kelement subsets
 - □ ZDDs for all (k or greater)element subsets
 - Still O(n²)
- To find a bound, need to factor in the additional nodes due to keeping all (k or greater) element subsets

Opportunistic Subsumption Finding

- 'Subsume'-able sets can occur as the result of Existential Abstraction or Union
 - In pigeonhole instances, this only occurs when we satisfy 1 pigeon clause
 - ⇒Smaller sets will have only one less element than larger sets they subsume
- Can detect some subsumptions by recursively searching for nodes of the form
 - □ Captures subsumptions which occur in CBFS's solution of pigeonhole instances

Thanks again!!!

Processing a Single Variable

- Given:
 - □ Assignment of 0 or 1 to a single variable x
- It violates some clauses: $V_{x \leftarrow \{0,1\}}$
 - \square $V_{x \leftarrow \{0,1\}}$: Clauses which are unit, and this assignment makes the remaining literal false
 - If any clause in $V_{x \leftarrow \{0,1\}}$ is open then the partial truth assignment for that set of open clauses cannot yield satisfiability
 - ☐ Remove all such sets of open clauses
 - ⇒ Can use ZDD Intersection

Processing a Single Variable

- Given:
 - □ Assignment of 0 or 1 to a single variable x
- It satisfies some clauses: S_{x←{0,1}}
 - \square S_{x-{0,1}}: Clauses in which x appears, and the assignment makes the corresponding literal true
 - If any clause in $S_{x \leftarrow \{0,1\}}$ is open, it should no longer be
 - \square Remove all such clauses $S_{x \leftarrow \{0,1\}}$ from any set
 - ⇒ ZDD ∃Abstraction

Processing a Single Variable

- Given:
 - □ Assignment of 0 or 1 to a single variable x
- It activates some clauses, A_{x←{0,1}}
 - \square A_{x \leftarrow {0,1}}: Clauses in which x is the first literal encountered, and x does not satisfy
 - These clauses are open in any branch of the search now
 - \square Add these clauses $A_{x \leftarrow \{0,1\}}$ to each set
 - ⇒ ZDD Cartesian Product