On Proof Systems Behind

Efficient SAT Solvers

DoRon B. Motter and Igor L. Markov
University of Michigan, Ann Arbor

" A
Motivation

m Best complete SAT solvers are based on DLL

Runtime (on unSAT instances) is lower-bounded
by the length of resolution proofs

Exponential lower bounds for pigeonholes
m Previous work: we introduced the Compressed

Breadth-First Search algorithm (CBFS/Cassatt)

Empirical measurements: our implementation
of Cassatt spends O(n4) time on PHP "1

m This work: we show analytically that CBFS
refutes pigeonhole instances PHP "*1 in poly time

Hope to find a proof system behind Cassatt

seconds

40

35 f
30 r
25 f
20 f
15
10 ¢

; Cassatt

~ Chaff

; ZRes
{ GRASP

10 15 20 25

holes

seconds

Empirical Performance

1000

100 ¢

10 ¢

0.1 ¢

0.01

Cassatt —
n**4/800000

" A
Related Work

m We are pursuing novel algorithms for SAT
facilitated by data structures with compression

Zero-suppressed Binary Decision Diagrams (ZDDs)
m EXxisting algorithms can be implemented w ZDDs
The DP procedure: Simon and Chatalic, [ICTAI 2000] §

DLL: Aloul, Mneimneh and Sakallah, [DATE 2002]
m We use the union-with-subsumption operation

m Details of the Cassatt algorithm are in
Motter and Markov, [ALENEX 2002]

» I
Outline

m Background

m Compressed BFS
Overview
Example
Algorithm

m Pigeonhole Instances

m Outline of Proof
Some bounds

m Conclusions and Ongoing Work

Background

(@+c+d)(-g +-h)(-b + e +)(d + -e)

Background: Terminology

m Given partial truth assignment (dJEré)
m Classify all clauses into: .

disjoint

{

(

Satisfied (B et
= At least one literal assigned true (a+ c+td) (gt+h)

m All literals assigned, and not satisfied
Open

m 1+ literal assigned, and no literals assigned true

m Open clauses are activated but not satisfied
Activated

m Have at least one literal assigned some value
Unit

= Have all but one literal assigned, and are open

Violated :
abcdefgh

m A valid partial truth assignment < no violated clauses

Open Clauses

m Straightforward Breadth-First Search
Maintain all valid partial truth assignments
of a given depth; increase depth in steps

m Valid partial truth assignments

— sets of open clauses
No literals assigned = Clause is not activated
All literals assigned = Clause must be satisfied
m Because: assignment is valid = no clauses are violated

m “Cut” clause = some, but not all literals assigned
Must be either satisfied or open
This is determined by the partial assignment

Binary Decision Diagrams

(]
1
(]
m BDD: A directed acyclic graph (DAG) R
Unique source
Two sinks: the 0 and 1 nodes @ i
m Each node has /’
Unique label !
Level index !
Two children at lower levels o
= T-Child and E-Child ¢ N
m BDDs can represent Boolean functions °
Evaluation is performed by a single DAG traversal
m BDDs are characterized by reduction rules 0 1 ||
If two nodes have the same level index and children

= Merge these nodes

Zero-Supressed BDDs (ZDDs)

m Zero-supression rule
Eliminate nodes whose T-Child is O

No node with a given index =
assume a node whose T-childis O

m ZDDs can store a collection of subsets
Encoded by the collection’s characteristic function
O is the empty collection &
1 is the one-collection of the empty set {J}

m Zero-suppression rule enables compact
representations of sparse or regular collections

Compressed BFS: Overview

m Maintain collection of subsets of open clauses

Analogous to maintaining all |
“promising” partial solutions of increasing depth

Enough information for BFS on the solution tree

m This collection of sets is called the front
Stored and manipulated in compressed form (ZDD)
Assumes a clause ordering (global indices)

m Clause indices correspond to node levels in the ZDD

m Algorithm: expand one variable at a time

When all variables are processed two cases
possible

m Thefrontis @ = Unsatisfiable

= The front is {J} = Satisfiable

Compressed BFS

Front « 1 # assign {J} to front

foreach v € Vars
Front2 <« Front
Update (Front, v « 1)
Update (Front2, v <« 0)
Front < Front U, Front2

if Front 0 return Unsatisfiable
if Front 1 return Satisfiable

"
Compressed BFS: An Example

(b+c+d)(-b+c+-d)(a+c+d)(a+b+-c)(-a+-c+d)(-a+b+d)

J J J -

Y Y Y Y

1 2 3 4 S 6

m Process variables in the order {a, b, c, d}

m Initially the frontis setto 1
The collection should
contain one “branch” l
This branch should contain
no open clauses = {J}

"
Compressed BFS: An Example

(b+c+d)(-b+c+-d)(a+c+d)(a+b+-c)(-a+-c+d)(-a+b+d)

J AN J -

1 2 3 4) 6
m Processing variable a
Activate clauses {3, 4, 5, 6} $
m Cut clauses: {3, 4, 5, 6} ,
a=0 b
= Clauses {3, 4} become open v/
a=1 @
= Clauses {5, 6} become open . 0

m ZDD contains { {3, 4}, {5, 6} }

"
Compressed BFS: An Example

(b+c+d)(-b+c+-d)(a+c+d)(a+b+-c)(-a+-c+d)(-a+b+d)

J AN J -

Y Y Y Y

1 2 3 4 S

m Processing variable b

Activate clauses {1, 2}
m Cut clauses: {1, 2, 3, 4, 5, 6}
b=0
= No clauses can become violated
b is not the end literal for any clause

m Clause 2 is satisfied
Don’t need to add it

m Clause 1 first becomes activated

Y

"
Compressed BFS: An Example

(b+c+d)(-b+c+-d)(a+c+d)(a+b+-c)(-a+-c+d)(-a+b+d)

J J J -

1 2 3 4) 6
m Processing variable b 1

Activate clauses {1, 2}
m Cut clauses: {1, 2, 3, 4, 5, 6}
b=1
= No clauses can become violated
b is not the end literal for any clause
m EXisting clauses 4, 6 are satisfied

m Clause 1 is satisfied
Don’t need to add it

m Clause 2 first becomes activated

"
Compressed BFS: An Example

(b+c+d)(-b+c+-d)(a+c+d)(a+b+-c)(-a+-c+d)(-a+b+d)

- J J J J -

1 2 3 4 5 6
m Processing variable b
Activate clauses {1, 2}

m Cut clauses: {1, 2, 3, 4, 5, 6} ::
b =1

= No clauses can become violated
b is not the end literal for any clause

m EXisting clauses 4, 6 are satisfied —>

m Clause 1 is satisfied
Don’t need to add it

m Clause 2 first becomes activated

"
Compressed BFS: An Example

(b+c+d)(-b+c+-d)(a+c+d)(a+b+-c)(-a+-c+d)(-a+b+d)

J J J -

Y Y Y Y

b b |

1 |
1 \ |
V \ '
| \ |
\ \ |
\ \ 1
1 \ |
1 \ ra 1
\ ' => \ 4 ’ <= 1 h
\ / vl ! | ’
\ / v, I ' ’ _1
— \ ' \, ' N ' —
-_— 1 / A 1 /
\ ! 7 1 . ’
' / Y / H '
’ \ / h '
7 7] /
’ ’ 1
’ ’

ar <
(@)

Compressed BFS: An Example

(b+c+d)(-b+c+-d)(a+c+d)(a+b+-c)(-a+-c+d)(-a+b+d)

o

J J J -

Y Y Y Y Y

1 2 3 4 S 6
m Processing variable c

Finish clause 4 3 @
m Cut clauses: {1, 2, 3, 5, 6} Q :

c=0
s No clauses become violated
c ends 4, but c=0 satisfies it A
s Clauses 4,5 become satisfied @
= No clauses become activated ., L

"
Compressed BFS: An Example

(b+c+d)(-b+c+-d)(a+c+d)(a+b+-c)(-a+-c+d)(-a+b+d)

J J J -

Y Y Y Y Y

1 2 3 4 S 6
m Processing variable c

Finish clause 4 3
= Cut clauses: {1, 2, 3, 5, 6} Q
c=1 \

m Clause 4 may be violated
If c appears in the ZDD,

then it is still open ()’ \
m Clauses 1, 2, 3 are satisfied N T
= No clauses become activated "\,
0 1

"
Compressed BFS: An Example

(b+c+d)(-b+c+-d)(a+c+d)(a+b+-c)(-a+-c+d)(-a+b+d)

J J J -

Y Y Y Y

1 2 3 4 S 6

m Processing variable d
Finish clauses {1, 2, 3, 5, 6}
m Cut clauses: {1, 2, 3, 5, 6}
d=0,d=1
m All clauses are already satisfied

s Assignment doesn’t affect this
m Instance is satisfiable

Compressed BFS: Pseudocode

CompressedBfs(Vars, Clauses)

front < 1

fori=1to |Vars|do
front’ « front
//Modify front to reflect x, = 1
Form sets Uy, Sy 1, Ayt
front «<— front m 2Cut- Uxi.1
front < ExistAbstract(front, S,;)
front < front ® A,;;
[IModify front' to reflect x, = 0
Form sets U, g, Sy 0. Axio
front’ « front’ n 2Cut- Uxi.0
front’ «— ExistAbstract(front’, S, o)
front’ < front’ ® A,;
//Combine the two branches via Union with Subsumption
front < front Uy front'

if front =0 then
return Unsatisfiable

if front =1 then
return Satisfiable

The Instances PHP "1

m Negation of the pigeonhole principle

“If n+1 pigeons are placed in n holes
then some hole must contain more than one pigeon”

m Encoded as a CNF
n(n+1) Boolean variables
= v, represents that pigeon i is in hole
n+1 “Pigeon” clauses: (v, + v, + ... + V)
m Pigeon | must be in some hole
n(n+1) “Pairwise Exclusion” clauses (per hole): (vi; + Vi)
= No two pigeons can be in the same hole
m Unsatisfiable CNF instance

m Use the “hole-major” variable ordering
{X1: X5, oo Xpnenyt © Va1, Vorr oo Ve Va2 Voos «--}

The Instances PHP "1

X+%) X+%)

Pairwise Exclusion
Clauses

Pigeon
Clauses

(XpHx,) () (xx 6)

" A
Outline of Proof

m Bound the size of the ZDD-based representation
throughout execution

With most ZDD operations:
= h =zdd_op(zZDD f, ZDD g)
m N is built during a traversal of ZDDs f, g
= The execution time is bounded by poly(|f|, |g|)
m Do not consider all effects of reduction rules
These obscure underlying structure of the ZDD

Reduction rules can only eliminate nodes
m This will still allow an upper bound on ZDD size

" A
Outline of Proof

m Main idea: Bound the size of
the partially reduced ZDD

First compute a simple bound
between “holes”

Prove that the size does not
grow too greatly inside “holes”
m Show the ZDD at given step
has a specific structure

" J
Bounds Between H,

m Lemma. Letke {1, 2, ..., n}. After
assigning values to variables X, X,
.1 Xgne1y WE may satisfy at most k
of the n+1 pigeon clauses.

Valid partial truth assignment to the
first k(n+1) variables

Must set only one variable in H; true,
for each i<k.

m For CBFS
Remove subsumed sets

front contains all sets of (n+1-k)
pigeon clauses

How many nodes does this take?

" A
ZDD of all k-Element Subsets

m Toreach 1 = function must
select the T-Child on exactly k
Indices

Less than k = Traverse to O
More than k = Zero-Supression
Rule

m Contains (n+1-k)k nodes

m Z/DDs are a canonical
representatlon L
When this is encountered in CBFS, % ! / L

we are assured of this structure

— CBFS uses (n+1-k)(k+1) nodes O\

after variable X1, |

The front within H,

m After variable Xy(n+1)si the ZDD
contains (i+1) branches

m Main branch corresponds to
all Xgne1)+ 11 +-+» Xknen) + i T2ISE

m i+1 other branches
correspond to one of Xy, +
10 +oer Xne) + LTUE

m Squares correspond to ZDDs
of all subsets of a given size

m Can show this structure is
correct by induction

m Bound comes from counting
nodes in this structure

/

*
%KHH | ‘\i

-
-
-

-
- -
- -
- -
- _— _

JJJJJ
s

Analytlcal VS. Emplrlcal

i
25000 |- || " " “ "
1 |
I |
DDDDD u h }H
AR
DDDDD i ”| l,Llrll,rr,rfn" il| \[fr\'rll”.]f, 'l
'I h"l.r'[EEL 'I
” It (e
16000 i it [l
T i
4r/|'|’¢"y"uully M '||||||y|w|'|'l' |

"
Conclusions and Ongoing Work

m Understanding why CBFS can quickly solve
pigeonhole instances depends on recognizing
structural invariants within the ZDD

m We hope to understand exactly what proof
system is behind CBFS

m We hope to improve the performance of CBFS

DLL solvers have been augmented with many ideas
(BCP, clause subsumption, etc)

These ideas may have an analogue with CBFS giving
a performance increase

Thank you!!!

The Utility of Subsumption

m Cassatt empirically solves 0
pigeonhole instances in O(n%)
without removing subsumptions

m Without subsumption removal

Instead of ZDD’s for all k-
element subsets

ZDDs for all (k or greater)-
element subsets
s Still O(n?) _
m To find a bound, need to factor "'}
In the additional nodes due to _
keeping all (k or greater) 0.0001
element subsets

"Cassatt Without S_\lzasurn;}tlon" —]

01

Fa | L L 1 1 1 L PR
10 100

"
Opportunistic Subsumption Finding

m ‘Subsume’-able sets can occur as the result
of Existential Abstraction or Union

In pigeonhole instances, this only occurs when
we satisfy 1 pigeon clause

—Smaller sets will have only one less element than
larger sets they subsume

m Can detect some subsumptions by Q
recursively searching for nodes of the form — >
Captures subsumptions which occur in CBFS’s Q

solution of pigeonhole instances

"

Thanks again!!!

Processing a Single Variable

m Given:
Assignment of O or 1 to a single variable x

m It violates some clauses: V,_ 4,
Vyj0.1; : Clauses which are unit, and this
assignment makes the remaining literal false

= If any clause in V,_,, Is open then the partial truth
assignment for that s’e% of open clauses cannot yield
satisfiability
Remove all such sets of open clauses
— Can use ZDD Intersection

Processing a Single Variable

m Given:
Assignment of O or 1 to a single variable x

m |t satisfies some clauses: S,. 4,

Sy0,1)- Clauses in which x appears, and the
assignment makes the corresponding literal true
= Ifany clause in S,_, 4, Is open, it should no longer be

Remove all such clauses S, ;, from any set
— ZDD HAbstraction

"
Processing a Single Variable

m Given:
Assignment of O or 1 to a single variable x

m It activates some clauses, A, 1

A, 0.1y Clauses in which x is the first literal
encountered, and x does not satisfy
m These clauses are open in any branch of the search now

Add these clauses A, 1, to each set
— ZDD Cartesian Product

