On Proof Systems Behind Efficient SAT Solvers

DoRon B. Motter and Igor L. Markov
University of Michigan, Ann Arbor
Motivation

- Best complete SAT solvers are based on DLL
 - Runtime (on unSAT instances) is lower-bounded by the length of resolution proofs
 - Exponential lower bounds for pigeonholes
- Previous work: we introduced the Compressed Breadth-First Search algorithm (CBFS/Cassatt)
 - Empirical measurements: our implementation of Cassatt spends $\Theta(n^4)$ time on PHP_n^{n+1}
- This work: we show analytically that CBFS refutes pigeonhole instances PHP_n^{n+1} in poly time
 - Hope to find a proof system behind Cassatt
Empirical Performance
Related Work

- We are pursuing novel algorithms for SAT facilitated by data structures with compression
 - Zero-suppressed Binary Decision Diagrams (ZDDs)
- Existing algorithms can be implemented w ZDDs
 - The DP procedure: Simon and Chatalic, [ICTAI 2000]
 - DLL: Aloul, Mneimneh and Sakallah, [DATE 2002]
- We use the union-with-subsumption operation
- Details of the Cassatt algorithm are in
 - Motter and Markov, [ALENEX 2002]
Outline

- Background
- Compressed BFS
 - Overview
 - Example
 - Algorithm
- Pigeonhole Instances
- Outline of Proof
 - Some bounds
- Conclusions and Ongoing Work
Background

\[(a+c+d)(-g + -h)(-b + e + f)(d + -e)\]

\[
\begin{array}{c|c}
(a + c+d) & (d+\overline{e}) \\
(b + e+f) & (\overline{g}+\overline{h}) \\
\hline
\end{array}
\]

\[a \ b \ c \ d \ e \ f \ g \ h\]
Background: Terminology

- Given partial truth assignment
- Classify all clauses into:
 - **Satisfied**
 - At least one literal assigned true
 - **Violated**
 - All literals assigned, and not satisfied
 - **Open**
 - 1+ literal assigned, and no literals assigned true
 - Open clauses are activated but not satisfied
 - **Activated**
 - Have at least one literal assigned some value
 - **Unit**
 - Have all but one literal assigned, and are *open*

A valid partial truth assignment ⇔ no violated clauses
Open Clauses

- **Straightforward Breadth-First Search**
 - Maintain all valid partial truth assignments of a given depth; increase depth in steps

- **Valid partial truth assignments**
 - → sets of open clauses
 - **No** literals assigned ⇒ Clause is **not activated**
 - **All** literals assigned ⇒ Clause must be **satisfied**
 - Because: assignment is valid ⇒ no clauses are violated

- **“Cut” clause** = **some**, but not all **literals assigned**
 - Must be either **satisfied** or **open**
 - This is determined by the partial assignment
Binary Decision Diagrams

- BDD: A directed acyclic graph (DAG)
 - Unique source
 - Two sinks: the 0 and 1 nodes
- Each node has
 - Unique label
 - Level index
 - Two children at lower levels
 - T-Child and E-Child
- BDDs can represent Boolean functions
 - Evaluation is performed by a single DAG traversal
- BDDs are characterized by reduction rules
 - If two nodes have the same level index and children
 - Merge these nodes
Zero-Suppressed BDDs (ZDDs)

- Zero-suppression rule
 - Eliminate nodes whose T-Child is 0
 - No node with a given index \Rightarrow assume a node whose T-child is 0

- ZDDs can store a collection of subsets
 - Encoded by the collection’s characteristic function
 - 0 is the empty collection \emptyset
 - 1 is the one-collection of the empty set $\{\emptyset\}$

- Zero-suppression rule enables compact representations of sparse or regular collections
Compressed BFS: Overview

- Maintain collection of subsets of open clauses
 - Analogous to maintaining all “promising” partial solutions of increasing depth
 - Enough information for BFS on the solution tree
- This collection of sets is called the **front**
 - Stored and manipulated in compressed form (ZDD)
 - Assumes a clause ordering (global indices)
 - Clause indices correspond to node levels in the ZDD
- Algorithm: expand one variable at a time
 - When all variables are processed two cases possible
 - The front is \emptyset \Rightarrow Unsatisfiable
 - The front is $\{\emptyset\} \Rightarrow$ Satisfiable
Compressed BFS

\[\text{Front} \leftarrow 1 \quad \# \text{ assign } \{\emptyset\} \text{ to front} \]

\textbf{foreach } v \in \text{Vars} \n
\enspace \text{Front2} \leftarrow \text{Front} \n
\enspace \text{Update(Front, v } \leftarrow 1) \n
\enspace \text{Update(Front2, v } \leftarrow 0) \n
\enspace \text{Front} \leftarrow \text{Front} \cup \text{Front2} \n
\textbf{if } \text{Front} == 0 \textbf{ return } \text{Unsatisfiable} \n
\textbf{if } \text{Front} == 1 \textbf{ return } \text{Satisfiable}
Compressed BFS: An Example

\[(b + c + d)(-b + c + -d)(a + c + d)(a + b + -c)(-a + -c + d)(-a + b + d)\]

\[1\ 2\ 3\ 4\ 5\ 6\]

- Process variables in the order \{a, b, c, d\}
- Initially the front is set to 1
 - The collection should contain one “branch”
 - This branch should contain no open clauses \(\Rightarrow\) \{\emptyset\}
Compressed BFS: An Example

(b + c + d)(-b + c + -d)(a + c + d)(a + b + -c)(-a + -c + d)(-a + b + d)

- Processing variable a
 - Activate clauses \{3, 4, 5, 6\}
 - Cut clauses: \{3, 4, 5, 6\}
 - a = 0
 - Clauses \{3, 4\} become open
 - a = 1
 - Clauses \{5, 6\} become open
- ZDD contains \{ {3, 4}, {5, 6} \}
Compressed BFS: An Example

\[(b + c + d)(-b + c + -d)(a + c + d)(a + b + -c)(-a + -c + d)(-a + b + d)\]

- Processing variable \(b\)
 - Activate clauses \(\{1, 2\}\)
 - Cut clauses: \(\{1, 2, 3, 4, 5, 6\}\)
 - \(b = 0\)
 - No clauses can become violated
 - \(b\) is not the end literal for any clause
 - Clause 2 is satisfied
 - Don’t need to add it
 - Clause 1 first becomes activated
Compressed BFS: An Example

\[(b + c + d)(-b + c + -d)(a + c + d)(a + b + -c)(-a + -c + d)(-a + b + d)\]

- **Processing variable b**
 - Activate clauses \{1, 2\}
 - Cut clauses: \{1, 2, 3, 4, 5, 6\}
 - \(b = 1\)
 - No clauses can become violated
 - \(b\) is not the end literal for any clause
 - Existing clauses 4, 6 are satisfied
 - Clause 1 is satisfied
 - Don’t need to add it
 - Clause 2 first becomes activated
Compressed BFS: An Example

\[(b + c + d)(-b + c + -d)(a + c + d)(a + b + -c)(-a + -c + d)(-a + b + d)\]

- **Processing variable b**
 - Activate clauses \(\{1, 2\}\)
 - Cut clauses: \(\{1, 2, 3, 4, 5, 6\}\)
 - \(b = 1\)
 - No clauses can become violated
 - \(b\) is not the end literal for any clause
 - Existing clauses 4, 6 are satisfied
 - Clause 1 is satisfied
 - Don’t need to add it
 - Clause 2 first becomes activated
Compressed BFS: An Example

(b + c + d)(-b + c + -d)(a + c + d)(a + b + -c)(-a + -c + d)(-a + b + d)
Compressed BFS: An Example

(b + c + d)(-b + c + -d)(a + c + d)(a + b + -c)(-a + -c + d)(-a + b + d)

1 2 3 4 5 6

- Processing variable c
 - Finish clause 4
 - Cut clauses: {1, 2, 3, 5, 6}
 - c = 0
 - No clauses become violated
 - c ends 4, but c=0 satisfies it
 - Clauses 4,5 become satisfied
 - No clauses become activated
Compressed BFS: An Example

\[(b + c + d)(-b + c + -d)(a + c + d)(a + b + -c)(-a + -c + d)(-a + b + d)\]

- Processing variable c
 - Finish clause 4
 - Cut clauses: \{1, 2, 3, 5, 6\}
 - c = 1
 - Clause 4 may be violated
 - If c appears in the ZDD, then it is still open
 - Clauses 1, 2, 3 are satisfied
 - No clauses become activated
Compressed BFS: An Example

\[(b + c + d)(-b + c + -d)(a + c + d)(a + b + -c)(-a + -c + d)(-a + b + d)\]

1. **Processing variable d**
 - Finish clauses \(\{1, 2, 3, 5, 6\}\)
 - Cut clauses: \(\{1, 2, 3, 5, 6\}\)
 - \(d = 0, d=1\)
 - All clauses are already satisfied
 - Assignment doesn’t affect this
 - Instance is satisfiable
Compressed BFS: Pseudocode

CompressedBfs(Vars, Clauses)

front ← 1

for i = 1 to |Vars| do

 front’ ← front

 //Modify front to reflect \(x_i = 1 \)
 Form sets \(U_{x_i,1}, S_{x_i,1}, A_{x_i,1} \)
 front ← front ∩ 2^{Cut - U_{x_i,1}}
 front ← ExistAbstract(front, \(S_{x_i,1} \))
 front ← front ⊗ \(A_{x_i,1} \)

 //Modify front’ to reflect \(x_i = 0 \)
 Form sets \(U_{x_i,0}, S_{x_i,0}, A_{x_i,0} \)
 front’ ← front’ ∩ 2^{Cut - U_{x_i,0}}
 front’ ← ExistAbstract(front’, \(S_{x_i,0} \))
 front’ ← front’ ⊗ \(A_{x_i,0} \)

 //Combine the two branches via Union with Subsumption
 front ← front ∪_{s} front’

if front = 0 then
 return Unsatisfiable

if front = 1 then
 return Satisfiable
The Instances PHP_n^{n+1}

- Negation of the pigeonhole principle
 - “If $n+1$ pigeons are placed in n holes then some hole must contain more than one pigeon”

- Encoded as a CNF
 - $n(n+1)$ Boolean variables
 - v_{ij} represents that pigeon i is in hole j
 - $n+1$ “Pigeon” clauses: $(v_{i1} + v_{i2} + \ldots + v_{in})$
 - Pigeon i must be in some hole
 - $n(n+1)$ “Pairwise Exclusion” clauses (per hole): $(\overline{v_{i1j}} + \overline{v_{i2j}})$
 - No two pigeons can be in the same hole

- Unsatisfiable CNF instance

- Use the “hole-major” variable ordering
 - $\{x_1, x_2, \ldots x_{n(n+1)}\} \leftrightarrow \{v_{11}, v_{21}, \ldots, v_{(n+1)1}, v_{12}, v_{22}, \ldots\}$
The Instances $\overline{\text{PHP}}_{n}^{n+1}$
Outline of Proof

- Bound the size of the ZDD-based representation throughout execution
 - With most ZDD operations:
 - \(h = \text{zdd_op}(\text{ZDD } f, \text{ZDD } g) \)
 - \(h \) is built during a traversal of ZDDs \(f, g \)
 - The execution time is bounded by \(\text{poly}(|f|, |g|) \)
- Do not consider all effects of reduction rules
 - These obscure underlying structure of the ZDD
 - Reduction rules can only eliminate nodes
 - This will still allow an upper bound on ZDD size
Outline of Proof

- Main idea: Bound the size of the partially reduced ZDD
 - First compute a simple bound between “holes”
 - Prove that the size does not grow too greatly inside “holes”
- Show the ZDD at given step has a specific structure
Bounds Between H_k

- **Lemma.** Let $k \in \{1, 2, \ldots, n\}$. After assigning values to variables $x_1, x_2, \ldots, x_{k(n+1)}$, we may satisfy at most k of the $n+1$ pigeon clauses.
 - Valid partial truth assignment to the first $k(n+1)$ variables
 - Must set only one variable in H_i true, for each $i < k$.

- For CBFS
 - Remove subsumed sets
 - front contains all sets of $(n+1-k)$ pigeon clauses
 - How many nodes does this take?
ZDD of all k-Element Subsets

- To reach 1 ⇒ function must select the T-Child on exactly k indices
 - Less than k ⇒ Traverse to 0
 - More than k ⇒ Zero-Suppression Rule
- Contains \((n+1-k)k\) nodes
- ZDDs are a canonical representation
 - When this is encountered in CBFS, we are assured of this structure
 ⇒ CBFS uses \((n+1-k)(k+1)\) nodes after variable \(x_k(n+1)\)
The *front* within H_k

- After variable $x_{k(n+1)+i}$ the ZDD contains $(i+1)$ “branches”
- Main branch corresponds to all $x_{k(n+1)} + 1, \ldots, x_{k(n+1)} + i$ false
- $i+1$ other branches correspond to one of $x_{k(n+1)} + 1, \ldots, x_{k(n+1)} + i$ true
- Squares correspond to ZDDs of all subsets of a given size
- Can show this structure is correct by induction
- Bound comes from counting nodes in this structure
Analytical vs. Empirical
Conclusions and Ongoing Work

- Understanding why CBFS can quickly solve pigeonhole instances depends on recognizing structural invariants within the ZDD
- We hope to understand exactly what proof system is behind CBFS
- We hope to improve the performance of CBFS
 - DLL solvers have been augmented with many ideas (BCP, clause subsumption, etc)
 - These ideas may have an analogue with CBFS giving a performance increase
Thank you!!!
The Utility of Subsumption

- Cassatt empirically solves pigeonhole instances in $O(n^4)$ without removing subsumptions.
- Without subsumption removal:
 - Instead of ZDD’s for all k-element subsets
 - ZDDs for all $(k \text{ or greater})$-element subsets
 - Still $O(n^2)$
- To find a bound, need to factor in the additional nodes due to keeping all $(k \text{ or greater})$ element subsets.
Opportunistic Subsumption Finding

- ‘Subsume’-able sets can occur as the result of Existential Abstraction or Union
 - In pigeonhole instances, this only occurs when we satisfy 1 pigeon clause
 ⇒ Smaller sets will have only one less element than larger sets they subsume
- Can detect some subsumptions by recursively searching for nodes of the form
 - Captures subsumptions which occur in CBFS’s solution of pigeonhole instances
Thanks again!!!
Processing a Single Variable

- **Given:**
 - Assignment of 0 or 1 to a single variable x
- It violates some clauses: $V_{x \leftarrow \{0,1\}}$
 - $V_{x \leftarrow \{0,1\}}$: Clauses which are unit, and this assignment makes the remaining literal false
 - If any clause in $V_{x \leftarrow \{0,1\}}$ is open then the partial truth assignment for that set of open clauses cannot yield satisfiability
 - Remove all such sets of open clauses
 - Can use ZDD Intersection
Processing a Single Variable

- **Given:**
 - Assignment of 0 or 1 to a single variable x
- **It satisfies some clauses:** $S_{x \leftarrow \{0,1\}}$
 - $S_{x \leftarrow \{0,1\}}$: Clauses in which x appears, and the assignment makes the corresponding literal true
 - If any clause in $S_{x \leftarrow \{0,1\}}$ is open, it should no longer be
 - Remove all such clauses $S_{x \leftarrow \{0,1\}}$ from any set
 \Rightarrow ZDD \exists Abstraction
Processing a Single Variable

- Given:
 - Assignment of 0 or 1 to a single variable \(x \)
 - It activates some clauses, \(A_x \leftarrow \{0, 1\} \)
 - \(A_x \leftarrow \{0, 1\} \): Clauses in which \(x \) is the first literal encountered, and \(x \) does not satisfy
 - These clauses are open in any branch of the search now
 - Add these clauses \(A_x \leftarrow \{0, 1\} \) to each set
 \(\Rightarrow \) ZDD Cartesian Product