
© 2002 Fadi A. Aloul, University of Michigan

PBS: A Pseudo-Boolean Solver
and Optimizer

Fadi A. Aloul, Arathi Ramani,
Igor L. Markov, Karem A. Sakallah

University of Michigan

© 2002 Fadi A. Aloul, University of Michigan

Motivation …

SAT Solvers
Apps: Verification, Routing,

ATPG, Timing Analysis
Problem Type: CSP
Problem Format: CNF
Example: Chaff, GRASP, SATO

Generic ILP Solvers
Apps: Routing, Planning,

Scheduling
Problem Type: CSP/Optimization
Problem Format: ILP
Example: CPLEX, LP_Solve

Specialized 0/1 ILP Solvers
Apps: Verification, Routing,

Binate Covering
Problem Type: CSP/Optimization
Problem Format: CNF/PB (0/1 ILP)
Example: Satire, BSOLO, OPBDP, WSAT

© 2002 Fadi A. Aloul, University of Michigan

0 12
Channel i

Motivation …

SAT Solvers Generic ILP
Solvers

Specialized 0-1
ILP Solvers

Introduce a new specialized 0-1 ILP SAT solver
Describe Pseudo-Boolean (PB) search algorithms
Adapt SAT applications expressed in pure CNF to CNF/PB format
Empirically demonstrate effectiveness in EDA applications

Many applications require “Counting Constraints” that impose
upper/lower bounds on number of objects

© 2002 Fadi A. Aloul, University of Michigan

Outline

Boolean Satisfiability advances
Processing Pseudo-Boolean constraints
Applications

CSP
Optimization

Experimental evaluation
Conclusions

© 2002 Fadi A. Aloul, University of Michigan

Backtrack Search (DPLL)

Decision Engine

Init

Deduction Engine

Succeed

Conflict
Exist

Diagnosis Engine

SAT

UNS

No

Fail

Fail

Succeed

Yes

© 2002 Fadi A. Aloul, University of Michigan

Decision Strategy
Significantly improves the
search performance
Classified as:

Static
Dynamic

Chaff introduced dynamic
VSIDS:

Shown to be effective on most
benchmarks
Selects most common literal
and emphasizes variables in
recent conflicts

Decision Engine

UNS

Init

Deduction Engine

Succeed

Conflict
Exist

Diagnosis Engine

SAT

No

Fail

Fail

Succeed
Yes

© 2002 Fadi A. Aloul, University of Michigan

Improved BCP
Keeps track of any two
unresolved literals in
each clause instead of
keeping track of all
literals
Leads to significant
improvements over
conventional BCP
[Moskewicz et al.,
Zhang et al.]

Deduction Engine

Decision Engine

Init

Succeed

Conflict
Exist

Diagnosis Engine

SAT

UNS

No

Fail

Fail

Succeed
Yes

© 2002 Fadi A. Aloul, University of Michigan

Conflict Diagnosis and
Clause Deletion

Diagnosis Engine

SAT
Decision Engine

Init

Deduction Engine

Succeed

Conflict
Exist

UNS

No

Fail

Fail

Succeed
Yes

Add conflict-induced clauses
to avoid regenerating similar
conflicts in future parts of the
search process
Very effective in expediting
the search process
Allows non-chronological
backtracking
1UIP learning scheme shown
to perform best among other
learning schemes
[Zhang et al.]

© 2002 Fadi A. Aloul, University of Michigan

Random Restarts and
Backtracking

Decision Engine

Diagnosis Engine

Init

Deduction Engine

Succeed

Conflict
Exist

SAT

UNS

No

Fail

Fail

Succeed
Yes

Solver often gets stuck in
local non-useful search space
Random restarts periodically
unassigns all decisions and
randomly selects a new
decision sequence
Restarts ensures that
different sub-trees are
searched at every restart
Randomization can be
combined with backtracking

© 2002 Fadi A. Aloul, University of Michigan

Outline

Boolean Satisfiability advances
Processing Pseudo-Boolean constraints
Applications

CSP
Optimization

Experimental evaluation
Conclusions

© 2002 Fadi A. Aloul, University of Michigan

Pseudo-Boolean Constraints

Clauses can be generalized as a PB constraint:
(x + y) (x + y ≥ 1)
None of the presented algorithms rely on the
integrality of ci and can be implemented for
floating-point ci

gxcxc nn ~11 ++L

Zgci ∈,
},,{~ ≥≤=∈

Literalsxi ∈

© 2002 Fadi A. Aloul, University of Michigan

Motivating Example
Objective:

limit the true assignments
to k vars out of the n vars

Solution:









+1k
n

)1(+k

CNF:

clauses
Each of size

PB: single PB constraint

“at most 2 out of v1, v2,
v3, v4, v5, can be true”

Pure CNF:

PB form:

)()(
)()(
)()(
)()(
)()(

543542

532432

541531

431521

421321

vvvvvv
vvvvvv
vvvvvv
vvvvvv
vvvvvv

++⋅++
⋅++⋅++
⋅++⋅++
⋅++⋅++
⋅++⋅++

)211111(54321 ≤++++ vvvvv

© 2002 Fadi A. Aloul, University of Michigan

PB Constraint Data Structure
Struct PBConstraint {

Goal n; constraint type ~; list of ci and xi’s;
initLHS; // sum of all ci’s
LHS; // value of LHS based on current variable

assignment
maxLHS; // maximal possible value of LHS given the current

variable assignment }

For efficiency:
Sort the list of cixi in order of increasing ci

Convert all negative ci to positive:
i.e.

22211

2211

2211
)1(
cnxcxc
nxcxc

nxcxc

+≤+
≤−−

≤−

© 2002 Fadi A. Aloul, University of Michigan

Algorithms for PB Search
Assigning vi to 1:
For each literal xi of vi

If positive xi, LHS += ci

If negative xi, maxLHS -= ci

Unassigning vi from 1:
For each literal xi of vi

If positive xi, LHS -= ci

If negative xi, maxLHS += ci

PB constraint state:
≥ type

SAT: LHS ≥ goal
UNS: maxLHS < goal

≤ type
SAT: maxLHS ≤ goal
UNS: LHS > goal

5x1+6x2+3x3 ≤ 12

LHS = 0
maxLHS = 14

LHS = 5
maxLHS = 14

5x1+6x2+3x3 ≤ 12

LHS = 5
maxLHS = 8
SATISFIABLE

5x1+6x2+3x3 ≤ 12

© 2002 Fadi A. Aloul, University of Michigan

Algorithms for PB Search
Identifying implications

≤ type
if ci > goal – LHS, xi = 0
Implied by literals in PB
assigned to 1

5x1+6x2+3x3 ≤ 12

LHS = 0
maxLHS = 14
goal - LHS = 12

5x1+6x2+3x3 ≤ 12

LHS = 8
maxLHS = 14
goal - LHS = 4
Imply x2=0

≥ type
if ci > maxLHS – goal,
xi =1
Implied by literals in PB
assigned to 0

© 2002 Fadi A. Aloul, University of Michigan

Algorithms for PB Search
Identifying implications

≤ type
if ci > goal – LHS, xi = 0
Implied by literals in PB
assigned to 1

5x1+6x2+3x3 ≥ 10

LHS = 0
maxLHS = 14
maxLHS - goal = 4
Imply x1=x2=1

≥ type
if ci > maxLHS – goal,
xi =1
Implied by literals in PB
assigned to 0

© 2002 Fadi A. Aloul, University of Michigan

Outline

Boolean Satisfiability advances
Processing Pseudo-Boolean constraints
Applications

CSP
Optimization

Experimental evaluation
Conclusions

© 2002 Fadi A. Aloul, University of Michigan

Applications - CSP
Global Routing

2-D grid of cells arranged in rows/columns
Cell boundaries are edges
Capacity C is associated with each edge
(no more than C routes can pass)
Goal: route number of 2-pin connections
in the grid with edge capacities
Generate satisfiable instances using
randomized flooding

S

EE

E

S

SS

E

© 2002 Fadi A. Aloul, University of Michigan

Global Routing Formulation
Connectivity constraints
(for each net)

Exactly one edge selected
at start/end point
If cell is a mid-point,
either two or no edges are
selected

Capacity constraints
A net can use a single
track across an edge
No two nets can use the
same track across an edge

S

E S

E

vN vN

vE
vE

vW
vW

• Create a variable for each edge/net
2 x 12 = 24 variables

)(
))()((

vEvNvW
vEvWvEvNvWvN

++
+++

© 2002 Fadi A. Aloul, University of Michigan

Global Routing Formulation
Connectivity constraints
(for each net)

Exactly one edge selected
at start/end point
If cell is a mid-point,
either two or no edges are
selected

Capacity constraints
A net can use a single
track across an edge
No two nets can use the
same track across an edge

S

E S

E

vN vN

vE
vE

vW
vW

• Create a variable for each edge/net
2 x 12 = 24 variables

))((
))((

vWvEvNvWvEvN
vWvEvNvWvEvN

++++

++++

© 2002 Fadi A. Aloul, University of Michigan

Global Routing Formulation
Connectivity constraints
(for each net)

Exactly one edge selected
at start/end point
If cell is a mid-point,
either two or no edges are
selected

Capacity constraints
A net can use a single
track across an edge
No two nets can use the
same track across an edge

S

E S

E

vN vN

vE
vE

vW
vW

• Create a variable for each edge/net
2 x 12 = 24 variables

pureCNF CNF/PB









+

=
1

#
#

Cap
Nets

Cl
∑ ≤
netsall

Capvi
_

30 Nets
10 Cap

#Cl = 55M
vs.

1 PB

© 2002 Fadi A. Aloul, University of Michigan

Global Routing Formulation
Connectivity constraints
(for each net)

Exactly one edge selected
at start/end point
If cell is a mid-point,
either two or no edges are
selected

Capacity constraints
A net can use a single
track across an edge
No two nets can use the
same track across an edge

S

E S

E

vN1 vN1 vN2 vN2

vE1
vE1
vE2
vE2

vW1
vW1
vW2
vW2

• Create Cap variables per edge/net
2 x 2 x 12 = 48 variables

pureCNF

() () 







+







=

2
#

2
##

Nets
Cap

Cap
NetsCl

Additional
Variables
& Clauses

© 2002 Fadi A. Aloul, University of Michigan

Applications - optimization
Max-ONEs

Seeks an assignment that
Satisfies all constraints
Maximizes the number of variables assigned to true

Useful to represent “Max-Clique” problems
“Vertex Cover” can be reduced to Min-ONEs
Use a single PB constraint of type “≥” that includes
each variable with coefficient “1”
Iteratively increase the lower bound until the
problem becomes unsatisfiable
Extendable to “Weighted Max-ONEs”

© 2002 Fadi A. Aloul, University of Michigan

Applications - optimization
Max-SAT

Finds an assignment that
Satisfies maximum possible number of clauses

Generalization of SAT
Provides more info for unsatisfiable instances

Used to represent “Max-CUT” problems
Expressed using a single PB constraint
Solved using PBS
Addressed indirectly using WalkSAT

© 2002 Fadi A. Aloul, University of Michigan

Outline

Boolean Satisfiability advances
Processing Pseudo-Boolean constraints
Applications

CSP
Optimization

Experimental evaluation
Conclusions

© 2002 Fadi A. Aloul, University of Michigan

Experimental Setup
Platform: Pentium-II 300 MHz with 512MB RAM
running Linux
Runtime limit: 5000 sec
PBS Implemented in C++
PBS settings:

VSIDS decision heuristic
Optimized BCP
Random Restarts
1st UIP conflict analysis learning scheme
Clause deletion/random backtracking disabled

© 2002 Fadi A. Aloul, University of Michigan

Global Routing Experiment

V C #PB PBS SATIRE OPBDP V C Chaff Satire OPBDP Chaff
grout3.3-1 216 572 12 1.72 0.41 4.51 864 7592 40.43 0 3 24
grout3.3-2 264 700 12 0.33 0.96 4.65 1056 10864 11.3 3 14 34
grout3.3-3 240 636 12 0.09 1.1 6.65 960 9156 37.21 12 74 413
grout3.3-4 228 604 12 1.29 0.2 4.73 912 8356 103.13 0 4 80
grout3.3-5 240 634 12 0.84 0.35 6.88 960 9154 71.21 0 8 85
grout4.3-1 672 2004 24 3.46 109.7 5000 2688 33924 1361.6 32 1445 394
grout4.3-2 648 1928 24 1.92 32.13 5000 2592 31736 5000 17 2604 2604
grout4.3-3 648 1930 24 5.52 319.47 5000 2592 31738 5000 58 906 906
grout4.3-4 696 2072 24 16.3 3772 5000 2784 36176 2523 231 307 155
grout4.3-5 720 2144 24 2.06 567.12 5000 2880 38504 3915 275 2427 1900
grout4.3-6 624 1860 24 134 5000 5000 2496 29628 5000 37 37 37
grout4.3-7 672 2006 24 55 5000 5000 2688 33926 772.6 91 91 14
grout4.3-8 432 1280 24 2.9 177.8 5000 1728 15320 125 61 1724 43
grout4.3-9 840 2502 24 376 5000 5000 3360 51222 3203 13 13 9
grout4.3-10 840 2504 24 7.4 5000 5000 3360 51224 3465 676 676 468

PBS SpeedupInstance pure CNF CNF + pseudo-Boolean

© 2002 Fadi A. Aloul, University of Michigan

MaxONE Experiment

SATIRE OBPDP
DIMACS aim-50-1_6-yes1-1 50 80 29 0.01 0.01 0.02 1 2

aim-100-1_6-yes1-1 100 160 43 0.01 0.02 7.19 2 719
aim-200-2_0-yes1_1 200 400 96 0.01 0.06 5000 6 500000
ii8b1 336 2068 275 4.69 3180 56.2 678 12
jnh1 100 850 55 0.32 2.2 0.12 7 0.38
jnh204 100 800 58 0.28 1.63 0.14 6 0.50
par8-1 350 1149 79 0.01 0.06 0.05 6 5
par8-2-c 68 270 20 0.01 0.02 0.01 2 1

Beijing 3blocks 283 9690 63 4.83 49.53 4494 10 930
QG qg7-09 729 22060 81 0.1 5.41 9.8 54 98

qg6-09 729 21844 81 0.21 5.56 45 26 214
Planning bw_a 459 4675 73 0.03 0.43 0.21 14 7

bw_b 1087 13772 136 0.58 6.39 17.86 11 31
bw_c 3016 50457 272 24.37 315.5 5000 13 205

PBS SpeedupBench-
mark

Satisfiable
Instance V OPBDPC Max-

ONEs PBS SATIRE

© 2002 Fadi A. Aloul, University of Michigan

Conclusions
Adapting SAT apps to use CNF/PB constraints

leads to memory savings and runtime reductions
Proposed new specialized 0-1 ILP solver, PBS
Confirmed effectiveness on real world examples:

Global routing consistency instances
Max-ONEs optimization problems (extendable to
Max-SAT, Min-ONEs)

© 2002 Fadi A. Aloul, University of Michigan

Future Works
Compare state-of-the-art Generic ILP solvers,
such as CPLEX, to specialized 0-1 ILP solvers
Apply PBS to Max-SAT and Min-ONEs problems
Study applications to Max-Clique, Max
Independent Set, and Min Vertex Cover

