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i Motivation ...

/SAT Solvers N
Apps: Verification, Routing,
ATPG, Timing Analysis
Problem Type: CSP
Problem Format: CNF

\_Example: Chaff, GRASP, SATO /

/Generic ILP Solvers
Apps: Routing, Planning,
Scheduling
Problem Type: CSP/Optimization
Problem Format: ILP

\_Example: CPLEX, LP_Solve  /

:> /Specialized 0/1 ILP Solvers <:
Apps: Verification, Routing,
Binate Covering
Problem Type: CSP/Optimization

Problem Format: CNF/PB (0/1 ILP)
\_Example: Satire, BSOLO, OPBDP, WSAT/

© 2002 Fadi A. Aloul, University of Michigan



Channel i
012

i Motivation ...

Solvers

:>lSpecialized 0-1 ﬁ ' E

ILP Solvers

SAT Solvers} [Generlc ILP}

= Many applications require “Counting Constraints” that impose
upper/lower bounds on number of objects

= Introduce a new specialized 0-1 ILP SAT solver

= Describe Pseudo-Boolean (PB) search algorithms

= Adapt SAT applications expressed in pure CNF to CNF/PB format
= Empirically demonstrate effectiveness in EDA applications
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i Outline

= Boolean Satisfiability advances
= Processing Pseudo-Boolean constraints

= Applications

= CSP

= Optimization
= Experimental evaluation
= Conclusions
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Backtrack Search (DPLL)
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+» Decision Engine 1
lSucceed ( SAT )
Deduction Engine [«

Fail

P9920NS

Diagnosis Engine
Fail
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Decision Strategy

= Significantly improves the

C_Init )
v

Fail search performance

Decision Engine

v - |
| succeed @SATD * Classified as:

= Static

Deduction Engine 1<+

= Dynamic

= Chaff introduced dynamic
VSIDS:

P3320NS

= Shown to be effective on most
benchmarks

: : : = Selects most common literal
Diagnosis Engine and emphasizes variables in

iFail recent conflicts
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Improved BCP

C Iri't / o = Keeps track _of any_two
Decision Engine —) unresolved literals in
|Succeed (ISATD)  €ach clause instead of
Deduction Engine i+ Keeping track of all
. iterals
& = Leads to significant
? improvements over
conventional BCP

Diagnosis Engine [Moskewicz et al.,

ﬂ Zhang et al.]
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Conflict Diagnosis and
Clause Deletion

C_Init )
v

» Decision Engine

Fail

lSucceed C SXT )

Deduction Engine

-«

Diagnosis Engine

-

P3320NS

Add conflict-induced clauses
to avoid regenerating similar
conflicts in future parts of the
search process

Very effective in expediting
the search process

Allows non-chronological
backtracking

1UIP learning scheme shown
to perform best among other
learning schemes

[Zhang et al. ]
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Random Restarts and
Backtracking

C Illlt ) = Solver often gets stuck in
+| Decision Engine Fail local non-useful search space

lSuccee d (@ SXT ) " Randqm restarts _p_eriodically
_ _ unassigns all decisions and
Deduction Engine 4 randomly selects a new

decision sequence
Restarts ensures that

P3320NS
[ |

different sub-trees are
searched at every restart

Diagnosis Engine = Randomization can be

iFa" combined with backtracking
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i Outline

» Processing Pseudo-Boolean constraints

= Applications

= CSP

= Optimization
= Experimental evaluation
= Conclusions
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i Pseudo-Boolean Constraints

ClX] +---+CyXxyy ~ &
¢, 8 SV
~e {=,5,>

x; € Literals

= Clauses can be generalized as a PB constraint:
X+y)=2>XxX+y=>1)

= None of the presented algorithms rely on the
integrality of ci and can be implemented for
floating-point ci
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i Motivating Example

= Objective: = at most 2 out of vi, v2,
= limit the true assignments V3, V4, Vs, can be true”
to k vars out of the n vars s Pure CNF:
. (M +v2+Vv3)-(v +vp +V4)-
= Solution: o
(V1 +Vv2 +V5)-(V+V3+V4)-
= CNF; (V] + V3 +V5)- (V] + V4 +5)-
n
[ j (\72+\73+\74)-(\72+\73+\75)-
k+1)clauses (Vo +V4+V5)- (V3 +V4 +V5)
Each of size (k+1) 2RI TS

= PB form:

= PB: single PB constraint
(v +1vy +1v3 +1vg +1v5 < 2)
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PB Constraint Data Structure

= Struct PBConstraint {
= Goal n; constraint type ~; list of ¢i and xi’s;
= initLHS; // sum of all ¢'s

= LHS; /[ value of LHS based on current variable
assignment

= maxLHS; // maximal possible value of LHS given the current
variable assignment }

= For efficiency:

= Sort the list of cix; in order of increasing ci

= Convert all negative ci to positive:
L.e. cxj—cyxp<n

cixi—cr(l1=xy)<n

C1X] + Xy Sn+cy
© 2002 Fadi A. Aloul, University of Michigan



Algorithms for PB Search

Assigning v; to 1:
For each literal xi of vi
« If positive xi, LHS += ¢
= If negative x;, maxLHS -= ¢

Unassigning vi from 1:
For each literal xi of v; 5x1

« If positive xi, LHS -= ¢
= If negative x;, maxLHS += ¢
PB constraint state:
= > type
= SAT: LHS > goal OX1
= UNS: maxLHS < goal
= <type
= SAT: maxLHS < goal

= UNS :é‘%§2 %acgg.a,l\loul, University of Michigan

<12

LHS =0
maxLHS = 14

<12

LHS =5
maxLHS = 14

6X2 <12
LHS =5

maxLHS = 8
SATISFIABLE



i Algorithms for PB Search

= Identifying implications
= < type <12
= if i > goal = LHS, xi=0 J LHS =0

= Implied by literals in PB maxLHS = 14
assigned to 1 goal - LHS = 12
= >type OX1 3x3 <12
= if ¢ > maxLHS — goal, J LHS = 8
= maxLHS = 14
= Implied by literals in PB goal - LHS = 4

assigned to 0 Imply x2=0
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i Algorithms for PB Search

= Identifying implications
= < type
« if ci > goal —LHS, xi=0
= Implied by literals in PB
assigned to 1

= > type 5 10
= if ¢ > maxLHS — goal,
Xi =1 LHS = 0
= Implied by literals in PB maxLHS = 14
assigned to 0 maxLHS - goal = 4
Imply x1=x2=1
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i Outline

= Applications

= CSP

= Optimization
= Experimental evaluation
= Conclusions
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i Applications - CSP

= Global Routing

= 2-D grid of cells arranged in rows/columns

E i (S = Cell boundaries are edges
X ,"— = Capacity C is associated with each edge
@b
-

= (no more than C routes can pass)

= Goal: route number of 2-pin connections
in the grid with edge capacities

= Generate satisfiable instances using
randomized flooding
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Global Routing Formulatlon

VN VN
| |

_vW vE_
VW VE__

= Connectivity constraints
(for each net)

= Exactly one edge selected
at start/end point

= If cell is a mid-point,
either two or no edges are

1@ {®
selected

= Capacity constraints e Create a variable for each edge/net

= A net can use a single 2 x 12 = 24 variables
track across an edge

/
= No two nets can use the (vN +vW)(vN + vE)vW + vE)
same track across an edge (vW + VN +vE)

)
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Global Routing Formulatlon

VN VN
= Connectivity constraints - . -
(for each net) VW VE
= Exactly one edge selected | W VE.
at start/end point .
= If cell is a mid-point, F.
:> either two or no edges are 'T' el
selected
= Capacity constraints e Create a variable for each edge/net
= A net can use a single 2 x 12 = 24 variables
track across an edge o —
= No two nets can use the (VN +vE +vW) (VN +vE +vIV)
same track across an edge (WN +VE + VIV)ON + vE + vi7)

)
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Global Routing Formulatlon

VN VN
= Connectivity constraints - - —
(for each net) VW VE
= Exactly one edge selected | YW VE_
at start/end point 1
= If cell is a mid-point, F.
either two or no edges are 'T' el
selected
= Capacity c cH1 )\ I3 o Create a variable for each edge/net
» = A net cax 10 Cap X 12 = 24 variables
track ac
» = No two #Cl = 55M | pureCNF CNF/PB A
same track VS. # Nets S vi < Cap
1PB #Cl = Cap +1 all _nets
)
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Global Routing Formulation

VN1 vN1 vN2 vN2

= Connectivity constraints el [
(for each net) BYEE TS Vm VE%
= Exactly one edge selected T —VW2 VE2_
at start/end point L 13 - VW2 VEZ
= If cell is a mid-point, _-I_ r. Y Y
either two or no edges are el
selecteg
= Capaci .G [s[1a (), F-1M o« Create Cap variables per edge/net
» = Ane Variables 2 X 2 X 12 = 48 variables
track & Clauses
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i Applications - optimization

s Max-ONEs

= Seeks an assignment that
= Satisfies all constraints
= Maximizes the number of variables assigned to true

= Useful to represent "Max-Clique” problems
= Vertex Cover” can be reduced to Min-ONEs

=« Use a single PB constraint of type “>" that includes
each variable with coefficient “1”

» Iteratively increase the lower bound until the
problem becomes unsatisfiable

=« Extendable to "Weighted Max-ONEs”
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i Applications - optimization

s Max-SAT

= Finds an assignment that
= Satisfies maximum possible number of clauses

= Generalization of SAT
= Provides more info for unsatisfiable instances

= Used to represent "Max-CUT" problems
= EXpressed using a single PB constraint
= Solved using PBS

« Addressed indirectly using WalkSAT
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‘L Outline

= Experimental evaluation
= Conclusions
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i Experimental Setup

Platform: Pentium-II 300 MHz with 512MB RAM
running Linux

Runtime limit: 5000 sec
PBS Implemented in C++

PBS settings:

= VSIDS decision heuristic

= Optimized BCP

= Random Restarts

= 15t UIP conflict analysis learning scheme

= Clause deletion/random backtracking disabled
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i Global Routing Experiment

Instance CNF + pseudo-Boolean pure CNF PBS Speedup
\" C #PB|PBS SATIRE OPBDP \" Cc Chaff | Satire OPBDP Chaff
grout3.3-1 | 216 572 12| 1.72 0.41 4.51 864 7592 40.43 0 3 24
grout3.3-2 | 264 700 12 0.33 0.96 4.65 1056 10864 11.3 3 14 34
grout3.3-3 | 240 636 12| 0.09 1.1 6.65 960 9156 37.21 12 74 413
grout3.3-4 | 228 604 12| 1.29 0.2 4.73 912 8356 103.13 0 4 80
grout3.3-5 | 240 634 12| 0.84 0.35 6.88 960 9154 T71.21 0 8 85

grout4.3-1 | 672 2004 24| 3.46 109.7 5000 2688 33924 1361.6 32 1445 394
grout4.3-2 | 648 1928 24| 1.92 32.13 5000 2592 31736 5000 17 2604 2604
grout4.3-3 | 648 1930 24| 5.52 319.47 5000 2592 31738 5000 58 906 906
grout4.3-4 | 696 2072 24| 16.3 3772 5000 2784 36176 2523 231 307 155
grout4.3-5 | 720 2144 24| 2.06 567.12 5000 2880 38504 3915 275 2427 1900

grout4.3-6 | 624 1860 24| 134 5000 5000 2496 29628 5000 37 37 37
grout4.3-7 | 672 2006 24| 55 5000 5000 2688 33926 772.6 91 91 14
grout4.3-8 | 432 1280 24| 2.9 177.8 5000 1728 15320 125 61 1724 43
grout4.3-9 | 840 2502 24| 376 5000 5000 3360 51222 3203 13 13 9

grout4.3-10| 840 2504 24| 7.4 5000 5000 3360 51224 3465 676 676 468
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i MaxONE Experiment

Bench- Satisfiable Max- PBS Speedup
mark Instance v ¢ ONEs PBS SATIRE OPBDP SATIRE OBPDP
DIMACS |aim-50-1_6-yes1-1 50 80 29| 0.01 0.01 0.02 1 2
aim-100-1_6-yes1-1 100 160 43| 0.01 0.02 7.19 2 719
aim-200-2_0-yes1_1| 200 400 96| 0.01 0.06 5000 6 500000

ii8b1 336 2068 275 4.69 3180 56.2 678 12

jnh1 100 850 55( 0.32 2.2 0.12 7 0.38

jnh204 100 800 58( 0.28 1.63 0.14 6 0.50

par8-1 350 1149 79( 0.01 0.06 0.05 6 5

par8-2-c 68 270 20| 0.01 0.02 0.01 2 1

Beijing 3blocks 283 9690 63 4.83 49.53 4494 10 930
QG qg7-09 729 22060 81 0.1 5.41 9.8 54 98
qg6-09 729 21844 81 0.21 5.56 45 26 214

Planning |bw_a 459 4675 73 0.03 0.43 0.21 14 7
bw_b 1087 13772 136/ 0.58 6.39 17.86 11 31

bw_c 3016 50457 272| 24.37 315.5 5000 13 205
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i Conclusions

= Adapting SAT apps to use CNF/PB constraints

= |eads to memory savings and runtime reductions
= Proposed new specialized 0-1 ILP solver, PBS
= Confirmed effectiveness on real world examples:

= Global routing consistency instances

= Max-ONEs optimization problems (extendable to
Max-SAT, Min-ONEs)
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i Future Works

= Compare state-of-the-art Generic ILP solvers,
such as CPLEX, to specialized 0-1 ILP solvers

= Apply PBS to Max-SAT and Min-ONEs problems

= Study applications to Max-Clique, Max
Independent Set, and Min Vertex Cover
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