

Fadi A. Aloul, Arathi Ramani, Igor L. Markov, Karem A. Sakallah University of Michigan

SAT Solvers

Apps: Verification, Routing,

ATPG, Timing Analysis

Problem Type: CSP

Problem Format: CNF

Example: Chaff, GRASP, SATO

Generic ILP Solvers

Apps: Routing, Planning,

Scheduling

Problem Type: CSP/Optimization

Problem Format: ILP

Example: CPLEX, LP_Solve

Specialized 0/1 ILP Solvers

Apps: Verification, Routing,

Binate Covering

Problem Type: CSP/Optimization

Problem Format: CNF/PB (0/1 ILP)

Example: Satire, BSOLO, OPBDP, WSAT

© 2002 Fadi A. Aloul, University of Michigan

Motivation ... Channel i 012 Specialized 0-1 ILP Solvers

- Many applications require "Counting Constraints" that impose upper/lower bounds on number of objects
- Introduce a new specialized 0-1 ILP SAT solver
- Describe Pseudo-Boolean (PB) search algorithms
- Adapt SAT applications expressed in pure CNF to CNF/PB format
- Empirically demonstrate effectiveness in EDA applications

- Boolean Satisfiability advances
- Processing Pseudo-Boolean constraints
- Applications
 - CSP
 - Optimization
- Experimental evaluation
- Conclusions

Backtrack Search (DPLL)

© 2002 Fadi A. Aloul, University of Michigan

Decision Strategy

- Significantly improves the search performance
- Classified as:
 - Static
 - Dynamic
- Chaff introduced dynamic VSIDS:
 - Shown to be effective on most benchmarks
 - Selects most common literal and emphasizes variables in recent conflicts

Improved BCP

- Keeps track of any two unresolved literals in each clause instead of keeping track of all literals
- Leads to significant improvements over conventional BCP [Moskewicz et al., Zhang et al.]

Conflict Diagnosis and Clause Deletion

- Add conflict-induced clauses to avoid regenerating similar conflicts in future parts of the search process
- Very effective in expediting the search process
- Allows non-chronological backtracking
- 1UIP learning scheme shown to perform best among other learning schemes [Zhang et al.]

© 2002 Fadi A. Aloul, University of Michigan

Random Restarts and Backtracking

- Solver often gets stuck in local non-useful search space
- Random restarts periodically unassigns all decisions and randomly selects a new decision sequence
- Restarts ensures that different sub-trees are searched at every restart
- Randomization can be combined with backtracking

Outline

- Boolean Satisfiability advances
- Processing Pseudo-Boolean constraints
- Applications
 - CSP
 - Optimization
- Experimental evaluation
- Conclusions

Pseudo-Boolean Constraints

$$c_1x_1 + \dots + c_nx_n \sim g$$

 $c_i, g \in Z$
 $\sim \in \{=, \leq, \geq\}$
 $x_i \in Literals$

- Clauses can be generalized as a PB constraint:
 (x + y) → (x + y ≥ 1)
- None of the presented algorithms rely on the integrality of c_i and can be implemented for floating-point c_i

Motivating Example

- Objective:
 - limit the true assignments to k vars out of the n vars
- Solution:
 - CNF: $\binom{n}{k+1}$ clauses Each of size (k+1)
 - PB: single PB constraint

- "at most 2 out of v₁, v₂, v₃, v₄, v₅, can be true"
 - Pure CNF:

$$(\bar{v}_{1} + \bar{v}_{2} + \bar{v}_{3}) \cdot (\bar{v}_{1} + \bar{v}_{2} + \bar{v}_{4}) \cdot (\bar{v}_{1} + \bar{v}_{2} + \bar{v}_{4}) \cdot (\bar{v}_{1} + \bar{v}_{2} + \bar{v}_{5}) \cdot (\bar{v}_{1} + \bar{v}_{3} + \bar{v}_{4}) \cdot (\bar{v}_{1} + \bar{v}_{3} + \bar{v}_{5}) \cdot (\bar{v}_{1} + \bar{v}_{4} + \bar{v}_{5}) \cdot (\bar{v}_{2} + \bar{v}_{3} + \bar{v}_{4}) \cdot (\bar{v}_{2} + \bar{v}_{3} + \bar{v}_{5}) \cdot (\bar{v}_{2} + \bar{v}_{3} + \bar{v}_{5}) \cdot (\bar{v}_{2} + \bar{v}_{3} + \bar{v}_{5}) \cdot (\bar{v}_{2} + \bar{v}_{3} + \bar{v}_{5})$$

PB form:

$$(1v_1 + 1v_2 + 1v_3 + 1v_4 + 1v_5 \le 2)$$

PB Constraint Data Structure

- Struct PBConstraint {
 - Goal n; constraint type ~; list of c_i and x_i's;
 - initLHS; // sum of all c_i's
 - LHS; // value of LHS based on current variable assignment
 - maxLHS; // maximal possible value of LHS given the current variable assignment }
- For efficiency:
 - Sort the list of cixi in order of increasing ci
 - Convert all negative ci to positive:

i.e.
$$c_1x_1-c_2x_2\leq n$$

$$c_1x_1-c_2(1-\overline{x}_2)\leq n$$

$$c_1x_1+c_2\overline{x}_2\leq n+c_2$$
 © 2002 Fadi A. Aloul, University of Michigan

Algorithms for PB Search

- Assigning v_i to 1:
 For each literal x_i of v_i
 - If positive x_i, LHS += c_i
 - If negative x_i, maxLHS -= c_i
- Unassigning v_i from 1: For each literal x_i of v_i
 - If positive x_i, LHS -= c_i
 - If negative x_i, maxLHS += c_i
- PB constraint state:
 - ≥ type
 - SAT: LHS ≥ goal
 - UNS: maxLHS < goal
 - ≤ type
 - SAT: maxLHS ≤ goal
 - UNS: LHS > goal © 2002 Fact A. Aloul, University of Michigan

```
5x_1+6x_2+3x_3 \le 12
    maxLHS = 14
5x_1+6x_2+3x_3 \le 12
    LHS = 5
    maxLHS = 14
5x_1+6x_2+3x_3 \le 12
    LHS = 5
    maxLHS = 8
```

SATISFIABLE

Algorithms for PB Search

- Identifying implications
 - ≤ type
 - if $c_i > goal LHS$, $x_i = 0$
 - Implied by literals in PB assigned to 1
 - ≥ type
 - if c_i > maxLHS goal, x_i = 1
 - Implied by literals in PB assigned to 0

```
5x_1+6x_2+3x_3 \le 12
    LHS = 0
    maxLHS = 14
    goal - LHS = 12
5x_1 + 6x_2 + 3x_3 \le 12
    LHS = 8
    maxLHS = 14
    goal - LHS = 4
    Imply x_2=0
```


Algorithms for PB Search

- Identifying implications
 - ≤ type
 - if $c_i > goal LHS$, $x_i = 0$
 - Implied by literals in PB assigned to 1
 - ≥ type
 - if c_i > maxLHS goal, x_i =1
 - Implied by literals in PB assigned to 0

```
5x_1+6x_2+3x_3 \ge 10
LHS = 0
maxLHS = 14
maxLHS - goal = 4
Imply x_1=x_2=1
```


- Boolean Satisfiability advances
- Processing Pseudo-Boolean constraints
- Applications
 - CSP
 - Optimization
- Experimental evaluation
- Conclusions

Applications - CSP

Global Routing

- 2-D grid of cells arranged in rows/columns
- Cell boundaries are edges
- Capacity C is associated with each edge (no more than C routes can pass)
- Goal: route number of 2-pin connections in the grid with edge capacities
- Generate satisfiable instances using randomized flooding

Connectivity constraints (for each net)

- Exactly one edge selected at start/end point
- If cell is a mid-point, either two or no edges are selected
- Capacity constraints
 - A net can use a single track across an edge
 - No two nets can use the same track across an edge

Create a variable for each edge/net
 2 x 12 = 24 variables

$$(\overline{vN} + \overline{vW})(\overline{vN} + \overline{vE})(\overline{vW} + \overline{vE})$$
$$(vW + vN + vE)$$

- Connectivity constraints (for each net)
 - Exactly one edge selected at start/end point
 - If cell is a mid-point, either two or no edges are selected

- A net can use a single track across an edge
- No two nets can use the same track across an edge

Create a variable for each edge/net
 2 x 12 = 24 variables

$$(\overline{vN} + vE + vW)(vN + \overline{vE} + vW)$$
$$(vN + vE + \overline{vW})(\overline{vN} + \overline{vE} + \overline{vW})$$

- Connectivity constraints (for each net)
 - Exactly one edge selected at start/end point
 - If cell is a mid-point, either two or no edges are selected

 No two n same track

Create a variable for each edge/net $2 \times 12 = 24$ variables

pureCNF CNF/PB $\#Cl = \begin{pmatrix} \#Nets \\ Cap + 1 \end{pmatrix} \quad \begin{array}{c} \sum vi \leq Cap \\ all_nets \end{array}$

© 2002 Fadi A. Aloul, University of Michigan

Global Routing Formulation

- Connectivity constraints (for each net)
 - Exactly one edge selected at start/end point
 - If cell is a mid-point, either two or no edges are selected
- Capacit Additional
 - A net track & Clauses
 - No two news an edge

Create Cap variables per edge/net
 2 x 2 x 12 = 48 variables

© 2002 Fadi A. Aloul, University of Michigan

Applications - optimization

Max-ONEs

- Seeks an assignment that
 - Satisfies all constraints
 - Maximizes the number of variables assigned to true
- Useful to represent "Max-Clique" problems
- "Vertex Cover" can be reduced to Min-ONEs
- Use a single PB constraint of type "≥" that includes each variable with coefficient "1"
- Iteratively increase the lower bound until the problem becomes unsatisfiable
- Extendable to "Weighted Max-ONEs"

Applications - optimization

- Max-SAT
 - Finds an assignment that
 - Satisfies maximum possible number of clauses
 - Generalization of SAT
 - Provides more info for unsatisfiable instances
 - Used to represent "Max-CUT" problems
 - Expressed using a single PB constraint
 - Solved using PBS
 - Addressed indirectly using WalkSAT

- Boolean Satisfiability advances
- Processing Pseudo-Boolean constraints
- Applications
 - CSP
 - Optimization
- Experimental evaluation
- Conclusions

Experimental Setup

- Platform: Pentium-II 300 MHz with 512MB RAM running Linux
- Runtime limit: 5000 sec
- PBS Implemented in C++
- PBS settings:
 - VSIDS decision heuristic
 - Optimized BCP
 - Random Restarts
 - 1st UIP conflict analysis learning scheme
 - Clause deletion/random backtracking disabled

Global Routing Experiment

Instance	CNF + pseudo-Boolean						pure CNF			PBS Speedup		
	V	С	#PB	PBS	SATIRE	OPBDP	V	С	Chaff	Satire	OPBDP	Chaff
grout3.3-1	216	572	12	1.72	0.41	4.51	864	7592	40.43	0	3	24
grout3.3-2	264	700	12	0.33	0.96	4.65	1056	10864	11.3	3	14	34
grout3.3-3	240	636	12	0.09	1.1	6.65	960	9156	37.21	12	74	413
grout3.3-4	228	604	12	1.29	0.2	4.73	912	8356	103.13	0	4	80
grout3.3-5	240	634	12	0.84	0.35	6.88	960	9154	71.21	0	8	85
grout4.3-1	672	2004	24	3.46	109.7	5000	2688	33924	1361.6	32	1445	394
grout4.3-2	648	1928	24	1.92	32.13	5000	2592	31736	5000	17	2604	2604
grout4.3-3	648	1930	24	5.52	319.47	5000	2592	31738	5000	58	906	906
grout4.3-4	696	2072	24	16.3	3772	5000	2784	36176	2523	231	307	155
grout4.3-5	720	2144	24	2.06	567.12	5000	2880	38504	3915	275	2427	1900
grout4.3-6	624	1860	24	134	5000	5000	2496	29628	5000	37	37	37
grout4.3-7	672	2006	24	55	5000	5000	2688	33926	772.6	91	91	14
grout4.3-8	432	1280	24	2.9	177.8	5000	1728	15320	125	61	1724	43
grout4.3-9	840	2502	24	376	5000	5000	3360	51222	3203	13	13	9
grout4.3-10	840	2504	24	7.4	5000	5000	3360	51224	3465	676	676	468

MaxONE Experiment

Bench-	Satisfiable	V	С	Max-	PBS	SATIRE	OPPDP	PBS Speedup	
mark	Instance	V		ONEs		SATIRE	OPBDP	SATIRE	OBPDP
DIMACS	aim-50-1_6-yes1-1	50	80	29	0.01	0.01	0.02	1	2
	aim-100-1_6-yes1-1	100	160	43	0.01	0.02	7.19	2	719
	aim-200-2_0-yes1_1	200	400	96	0.01	0.06	5000	6	500000
	ii8b1	336	2068	275	4.69	3180	56.2	678	12
	jnh1	100	850	55	0.32	2.2	0.12	7	0.38
	jnh204	100	800	58	0.28	1.63	0.14	6	0.50
	par8-1	350	1149	79	0.01	0.06	0.05	6	5
	par8-2-c	68	270	20	0.01	0.02	0.01	2	1
Beijing	3blocks	283	9690	63	4.83	49.53	4494	10	930
QG	qg7-09	729	22060	81	0.1	5.41	9.8	54	98
	qg6-09	729	21844	81	0.21	5.56	45	26	214
Planning	bw_a	459	4675	73	0.03	0.43	0.21	14	7
	bw_b	1087	13772	136	0.58	6.39	17.86	11	31
	bw_c	3016	50457	272	24.37	315.5	5000	13	205

- Adapting SAT apps to use CNF/PB constraints
 - leads to memory savings and runtime reductions
- Proposed new specialized 0-1 ILP solver, PBS
- Confirmed effectiveness on real world examples:
 - Global routing consistency instances
 - Max-ONEs optimization problems (extendable to Max-SAT, Min-ONEs)

Future Works

- Compare state-of-the-art Generic ILP solvers, such as CPLEX, to specialized 0-1 ILP solvers
- Apply PBS to Max-SAT and Min-ONEs problems
- Study applications to Max-Clique, Max
 Independent Set, and Min Vertex Cover