Is Quantum Search Practical?

George F. Viamontes
Igor L. Markov
John P. Hayes

University of Michigan, EECS
Outline

- Motivation
- Background
- Quantum search
- Practical Requirements
- Quantum search versus ...
 - Classical simulation
 - Problem-specific algorithms
- Promising on-going work
Motivation

- Transistors are getting so small that quantum effects cannot be ignored
 - Why not harness them?

- Quantum circuits
 - A new model of computation: allows number-factoring in n^3 time

- A different model of computation: allows provably faster search

- Compare to SETs and QCAs, which perform traditional computation
5 qubit 215 Hz Q. Processor

(Vandersypen, Steffen, Breyta Yannoni, Cleve, and Chuang, 2000)

- The Molecule

Quantum Circuit

$T_2 > 0.3$ sec; ~ 200 gates

Source: IBM, Hot Chips Conference, 2000
Goals of This Work

- Study one particular quantum algorithm for search
 - Here, algorithm = circuit family
- Look for practical applications
- **Note 1**: quantum communication circuits already have commercial applications
- **Note 2**: all known quantum circuits for similar problems are related
Background

- Reversible Circuits
- Linear Algebra and Probability
- Quantum Information
- Quantum Gates and Circuits
- Grover’s Search Algorithm
Reversible Circuits

- Given a Boolean function \(f(x_1, x_2, \ldots, x_n) \) one can always construct a reversible circuit computing \(f() \)
 - Use Reed-Muller decomposition

\[
x_1 \quad x_2 \quad x_3
\]
\[
|0> \quad f(x_1, x_2, x_3)
\]

- Example: \(f(x_1, x_2, x_3) = x_2 \oplus x_1x_3 \oplus x_1x_2x_3 \)
Linear Algebra in 2^n Dimensions

- Basis vectors (basis-states) = bit-strings
 - $|00000>, |01010>, |11101> \text{ etc}$

- Linear combinations are allowed
 - Can multiply by complex numbers, and add
 - Everything is normalized, e.g.,
 - $(|0> + |1>)/\sqrt{2}$ and $(|00> + |10>)/\sqrt{2}$

- Bits & bit-strings are composed via tensor products
 - $|0> \otimes |1> = |01>$
 - $(|0> + |1>)/\sqrt{2} \otimes |0> = (|00> + |10>)/\sqrt{2}$
 - $(|00> + |11>)/\sqrt{2}$ is “entangled” (no decomposition)
Quantum Information

- Represents the physical state of
 - Photon polarizations, electron spins, etc
- Single-qubit: two-level quantum system
 - E.g., *spin-up* for $|0>$ and *spin-down* for $|1>$
 - When measuring $\alpha|0> + \beta|1>$, Prob$|0> = |\alpha|^2$
- Multiple qubits and quant. measurement
 - Linear combinations of bit-strings
 - E.g., $(|000> + |010> + |100> + |110>) / 2$
 - Can only observe an individual bit-string
Classical Circuits versus Quantum

- 0-1 strings
 - E.g., one bit \{0,1\}
- Bool. Functions
 - Gates & circuits
- Primary outputs
- Lin. combinations of 0-1 strings
 - E.g., one qubit \(\alpha|0> + \beta|1>\)
- 2^n-by-2^n matrices
 - Gates & circuits
- Probabilistic measurement
 - Mostly ignored here
Quantum Gates and Circuits

- Quantum computations M are certain invertible matrices (called unitary).
- A conventional reversible gate/computation can be extended to quantum by linearity:
 - E.g., a quantum inverter swaps $|0\rangle$ and $|1\rangle$.
 - Maps the state $(|0\rangle + |1\rangle)/\sqrt{2}$ to itself.
- Can apply an inverter on one of two qubits:
 - E.g., $(|00\rangle + i|11\rangle)/\sqrt{2} \rightarrow (|01\rangle + i|10\rangle)/\sqrt{2}$
- Hadamard gate:
 - $|0\rangle \rightarrow (|0\rangle + |1\rangle)/\sqrt{2}$
 - $|1\rangle \rightarrow (|0\rangle - |1\rangle)/\sqrt{2}$
Quantum Circuits

- Can apply an inverter on one of two qubits
 - E.g., $(|00> + i|11>) / \sqrt{2} \rightarrow (|01> + i|10>) / \sqrt{2}$
- How do we describe this computation?
 - Tensor product: **Identity** \otimes **NOT**
 - More generally: **A** \otimes **B**

\[
\begin{bmatrix}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
\end{bmatrix}
\]
Unstructured (Database) Search

- One seeks 1 record out of N records
- One can look at single records, one at a time
- One can use a black box (oracle) that tells you whether a given record is good
- Goal: minimize the number of oracle queries
- Possible non-quantum strategies
 - Try record 1, record 2, etc ... stop when rec. found
 - Or try records at random
- In the worst case, one must try all records
- On average, one will try half the records
If all items are indexed, you only need to find the right index
- \(n \) bits for \(N < 2^n \) records

In this case, the oracle is just a Boolean function on \(n \) bits
- This function is the input of search algorithm

Example 1: Boolean SATisfiability
- CNF formula represents an oracle

Example 2: Picking locks / finding passwords
- Verifying a password is easy
Quantum Search

- Now assume that the oracle can evaluate quantum queries
- Classical oracle: \(f(001) = \text{Yes} \)
- Quantum oracle:
 \[f((|000> + |001> + |010> + |011>) / 2) = (\text{No} + \text{Yes} + \text{No} + \text{No}) / 2 \]
- Can apply quantum gates before/after
- Must use quantum measurement
- Turns out: need only \(\sqrt{N} \) oracle queries
Grover’s Algorithm (Circuit)

- Input state: $|000...0\rangle$ (n qubits)
 - Remember, the input of search algo is the oracle

- Apply a Hadamard gate on each qubit
 - Produces linear combination of all bit-strings

- \sqrt{N} identical iterations, one query in each
 - Amplify the bit-string (index) sought, by $1/\sqrt{N}$, and de-amplify all remaining bit-strings

- Quantum measurement
 - Performed when the sought bit-string has highest probability of being observed
Requirements to Make this Practical

- R1: A search application S where classical methods do not provide sufficient scalability
- R2: An instantiation $Q(S)$ of Grover’s search for S with an asymptotic worst-case runtime which is less than that of any classical algorithm $C(S)$ for S
- R3: A $Q(S)$ with an actual runtime for practical instances of S, which is less than that of any $C(S)$
Application Scalability

- Explicit databases
 - Store records explicitly
 - Customer support, transaction-processing
 - TeraBytes of data, distributed storage
 - Massively parallel (search is easy to scale)
 - Classical methods scale so far (google.com)

- Implicit “databases” / index search
 - Combinatorial optimization & cryptography
 - Stronger demands for scalability
Oracle Implementation

- Complexity analysis proving quantum speed-up, assume oracle is a “black box”
 - I.e., absolutely no internal structure is known
- In applications, it is hard to avoid structure
 - Most “oracles” have small circuits
 - This may invalidate quantum speed-up
- Implementing the oracle can be difficult (requires circuit synthesis!)
 - If no small circuit exists/found, the oracle may dominate search time
Empirical Speed-up?

- Any successful quantum algorithm must outrun simulators
- Grover’s search vs QuIDD Pro
 - Viamontes et al., *Quant Info Proc.*, October 2003
 - This result assumes the oracle in QuIDD form
 - Creating QuIDD may be expensive
Comparing to Best Classical Algs.

- 3-SAT with n variables
 - Known randomized algorithm $\sim 1.33^n$
 - Grover’s search $\sim 1.41^n$

- Graph 3-coloring solvable in $\sim 1.37^n$

- Grover’s algorithm never finishes early
 - Classical algorithms often do

- Grover’s algorithm cannot be improved w/o using structure
Presence and Use of Structure

- In many cases, structure is present but not immediately clear
 - In cryptography, no need for brute force
 - “Algebraic structure” in AES, etc

- Recent promising work on “structured” quantum search
 - Average-case time for 3-SAT estimated 1.31^n versus 1.33^n classical worst case
Conclusions

☐ Even if scalable quantum computers were available today, unstructured quantum search is not useful
 ■ Future breakthroughs may help
 ■ Will have to use structure

☐ Our analysis can be used for other problems touted for quantum computing, e.g., graph isomorphism
 ■ Up-coming DAC paper, new tool SAUCY
Thank you