

Reversible Logic Circuit Synthesis

Vivek V. Shende, Aditya K. Prasad, Igor L. Markov and John P. Hayes University of Michigan

MichiganEngInteerIng

Outline

- Motivation
 - Real-world Applications
 - Theoretical Advantages
 - Links to Quantum Computation
- Background
 - **Theoretical Results**
 - Synthesis of Optimal Circuits
 - An Application to Quantum Computing

MichiganEngineering

Real-world Applications

- Many inherently reversible applications
- Info. is re-coded, but none is lost or added
 - Digital signal processing
 - Cryptography

chigan Engin`eering

- Communications
 - Computer graphics
- Network congestion modeling

Theoretical Advantages

- Information conservation laws in physics
 - Thermodynamics ties irreversibility to dissipated heat: every lost bit causes an energy loss
 - C. Bennett, 1973, IBM J. of R & D
- Energy-lossless circuits (*Time* $\rightarrow \infty$)

• must be information-lossless

 have been built: S. Younis and T. Knight, 1994, Workshop on Low Power Design

MichiganEngineering

Links to Quantum Computation

- Quantum operations are all reversible
 - M. Nielsen and I. Chuang, Quantum Computation and Quantum Information, Cambridge Univ. Press 2000
- Every (classical) reversible circuit may be implemented in quantum technology, with overhead
 - "Pseudo-classical" subroutines of quantum algos
 - Can be implemented in classical reversible logic circuits
 - S. Betteli, L. Serafini, and T. Calarco, 2001, http://xxx.lanl.gov/abs/cs.PL/0103009

iganEnginterintg

Outline

- Motivation
- Background
 - Reversibility
 - Permutations
 - Known Facts
 - Theoretical Results
- Synthesis of Optimal Circuits
- An Application to Quantum Computing

MichiganEngineering

Reversibility in Logic Gates

- Definition: reversible logic gate
 - #input wires = #output wires
 - Permutes the set of input values
- Examples
 - Inverter
 - 2-input, 2-output SWAP (S) gate
 - k-CNOT gate
 - (k+1)-inputs and (k+1)-outputs
 - Values on the first k wires are unchanged
 - The last value is flipped if the first k were all 1

MichiganEngineering

Reversibility in Logic Circuits

• <u>Definition</u>:

- A combinational logic circuit is reversible iff
 - It contains only reversible gates
 - It has no fan-out
 - It is acyclic (as a directed multi-graph)

• Theorem:

- A reversible circuit must
- Have as many input wires as output wires
- Permute the set of input values

MichiganEngineering

Example: A Reversible Circuit and Truth Table

Equivalent to a NOT gate on wire c

Circuit Equivalences

Figure 2: Two reversible circuit equivalences. $T(1,2;3) \cdot N(1) \cdot T(1,2;3) \cdot N(1) = C(2;3)$, and $C(3;2) \cdot C(2;3) \cdot C(3;2) = S(2,3)$

- Circuit equivalences: useful in synthesis
- More will be shown later

M

MichiganEnginiqering

Reversible Circuits & Permutations

- A reversible gate (or circuit) with *n* inputs and *n* outputs has
 - 2ⁿ possible input values

gan Ingin`eering

- 2ⁿ possible output values
- The function it computes on this set must, by definition, be a permutation
 - The set of such permutations is called S_{2ⁿ}

M

Basic Facts About Permutations

- Permutations are multiplied by first applying one, then the other
 - example: $(1,2)^{\circ}(2,3) = (1,3,2)$
- A transposition

gan Engin'eering

- permutes exactly two elements
- does not change any others
- Every permutation can be written as a product of transpositions

M

Even Permutations

- Consider all possible decompositions of a permutation into transpositions
- <u>Theorem</u>: The parity of the number of transpositions is constant

• <u>Definition</u>: Even permutations are those for which the number of transpositions is even

MichiganEngInteering

Known Facts

- Fact 1: Consider a reversible circuit
 - n+1 inputs and n+1 outputs
 - Built from gates which have at most *n* inputs and *n* outputs
 - Must compute an even permutation
 - Fact 2: A universal gate library
 CNOT, NOT, and TOFFOLI ("CNT")
 - Temporary storage may be required

ichigan Englinderfind

Temporary Storage

Figure 3: A reversible circuit with n-k wires of temp. storage.

Outline

- Motivation
- Background
- Theoretical Results

MichiganEnginteering

- Zero-storage Circuits
- Reversible De Morgan's Laws
- Synthesis of Optimal Circuits
- An Application to Quantum Computing

Minimizing Temporary Storage

• Consider CNT circuits

- <u>Theorem</u>: even permutations computable by circuits without temporary storage
- <u>Theorem</u>: odd permutations computable with one line of temporary storage
- Same holds for NT and CNTS circuits
- The proof is constructive and may be used as a synthesis heuristic

MichiganEngineering

Outline of Proof

- Explicitly construct a circuit to compute an arbitrary pair of <u>disjoint</u> transpositions (A, B) (C, D) is okay; (A, B) (B, C) is not
- Pick an even permutation
- Decompose it into transpositions
 - Will have an even number of transpositions
 - Pair these up, guaranteeing disjointness
 - Apply above construction to each pair

MichiganEnginiqering

Reversible De Morgan's Laws (1)

• De Morgan's Laws

- Apply to AND/OR/NOT circuits
- Allow pushing all inverters to the inputs
- Reversible De Morgan's Laws
 - Applied to reversible CNT circuits
 - Allow pushing all inverters to the inputs
- Pictures follow

MichiganEngineering

Reversible De Morgan's Laws (2)

- Similar rules exist for interchanging TOFFOLI and CNOT gates
- However, it is <u>not</u> always possible to push all CNOT gates to the inputs
- Oddly enough, all CNOT gates can be pushed to the "middle" of the circuit

MichiganEngInteering

Reversible De Morgan's Laws (3)

Reversible De Morgan's Laws (4)

Outline

- Motivation
- Background
- Theoretical Results
- Synthesis of Optimal Circuits
 - Optimality
 - IDA* Search Algorithm
 - Circuit Libraries
- An Application to Quantum Computing

MichiganEngineering

Optimality

- The cost of a circuit is its <u>gate count</u>
 Other cost functions can be considered
- <u>Definition</u>: optimal reversible circuit
 - no circuit with fewer gates computes the same permutation
- <u>Theorem</u>: a sub-circuit of an optimal circuit is optimal
 - Proof: otherwise, can improve the sub-circuit

Michigan Englitivering

IDA* Search

- Checks all possible circuits of cost 1, then all possible circuits of cost 2, etc...
- Avoids the memory blowup of BFS
- Still finds optimal solutions (unlike DFS)
- Checking circuits of cost less than *n*

Is much faster than processing cost-n circuits

M

Dynamic Prog + Circuit Libraries

- IDA* search requires a subroutine to check all circuits of cost n, for arbitrary n
 - Called iteratively for 1...n

ganEnginteering

- Only need to check locally optimal circuits
- Build optimal circuit library bottom up by DP
 - Index optimal circuits by computed permutation
 - In practice use hash_map datastruct from STL

Synthesis Algorithm (1)

MichiganEngineering

Synthesis Algorithm (2)

CIRCUIT find_circ(COST, PERM, CURR_CCT) if (COST \leq k) // if PERM can be computed by a circuit // with fewer at most k gates, // such a circuit must be in the library return CURR_CCT + LIB[DEPTH].find(PERM)); else // The goal circuit must have >k gates; // Try constructing it from k-gate circuits for each C in LIB[k] // divide PERM by permutation computed by C $PERM2 \leftarrow PERM * INVERSE(C.perm)$ // and try to synthesize the result TEMP_CCT \leftarrow find_circ(depth-k, PERM2)); if (TEMP_CCT != NIL) return TEMP_CCT;

MichiganEngineering

Empirical Circuit Synthesis

- Consider all reversible functions on 3 wires
 (8! = 40,320 functions)
- For each gate library from N, C, T, NC, CT, NT, CNT, CNTS

Is it universal?

- How many functions can it synthesize?
- What are largest optimal circuits?
- How long does it take to synthesize circuits?

MichiganEngineering

Optimal Circuit Sizes

Siz	e l	N	С	Т	NC	СТ	NT	CNT	CNTS
1	2	0	0	0	0	0	47	0	0
1	1	0	0	0	0	0	1690	0	0
1	0	0	0	0	0	0	8363	0	0
	9	0	0	0	0	0	12237	0	0
	8	0	0	0	0	6	9339	577	32
	7	0	0	0	14	386	5097	10253	6817
	6	0	2	0	215	1688	2262	17049	17531
	5	0	24	0	474	1784	870	8921	11194
	4	0	60	5	393	845	296	2780	3752
	3	1	51	9	187	261	88	625	844
	2	3	24	6	51	60	24	102	<u>135</u>
	1	3	6	3	9	9	6	12	15
	0	1	1	1	1	1	1	1	1
Total		8 1	68	24 [~]	1344	5040	40320	40320	40320
Time,	S	0	Ø	0	30	215	97	40	15

MI

MichiganEngineering

Outline

- Motivation
- Background
- Theoretical Results
- Synthesis of Optimal Circuits
- An Application to Quantum Computing
 - Grover's Search

MichiganEnginteering

Pseudo-classical Synthesis

Grover's Search

- A quantum algorithm for associative search (input is not sorted)
 - Search criterion: a classical one-output function f
 - L. K. Grover, "A Framework For Fast Quantum Mechanical Algorithms", STOC 1998
 - M. Nielsen and I. Chuang, 2000
- Runs in time O(\sqrt{N})
 - any classical algorithm provably requires $\Omega(N)$ time
 - Requires a subroutine (oracle) that
 - changes the phase (sign) of all basis states (bit-strings) that match the search criterion *f*

MichiganEngineering

Pseudo-classical Synthesis

- We focus on circuits for Grover oracles
- To change the sign of a bit-string
 - Initialize a qubit to |0> |1>
 - Compute the classical one-output function f
 - XOR the qubit with f
 - Whenever *f*=1, the sign (phase) will change
 - Thus, the design of Grover search circuits for a given *f*
 - Is reduced to reversible synthesis
 - Can be solved optimally by our methods

MichiganEngineering

ROM-based Circuits

- Desired circuits must alter phase of basis states
 - All bits except one must be restored to input values
- Previous work studied ROM-based circuits
 - Constraint: ROM qubits can never change
 - B. Travaglione et al., 2001, http://xxx.lanl.gov/abs/quant-ph/0109016
 - Theorems + heuristic synthesis algorithms
- Our work: synthesis of pseudo-classical circuits
 - 3 read-only "ROM" wires that can never change
 - 1 wire that can be changed during computation, but must be restored by end
 - 1 wire on which function is computed

MichiganEngineering

Synthesis Algorithms Compared

- Heuristic synthesis of ROM-based circuits
 - Proposed by Travaglione et al, 2001
 - Based on EXOR-sum decomposition ("EXOR") (Our code uses Mishchenko's EXORCISM-4)
 - Imposed a restriction: at most one control bit per gate can be on a ROM bit
- Optimal synthesis (as described earlier)
 - with restriction from Travaglione ("Opt T")
 - without this restriction ("Opt")

MichiganEngInteering

Sizes of 3+2 ROM-circuits

Size \mathbf{O} <u>4</u> <u>12</u> <u>4 12 18</u> **EXOR** <u>6</u> <u>12</u> <u>6</u> <u>19</u> <u>16</u> OptT 35 36 28 Opt Size 14 15 17 18 19 **23** 24 25 26 <u>8</u> EXOR <u>12</u> <u>6 12</u> <u>18</u> <u>12</u> <u>4</u> <u>6</u> <u>4</u> <u>4</u> OptT $\mathbf{0}$ Opt

M

MichiganEngIn?eerIng

Discussion of Empirical Results

- The EXOR-SUM heuristic is sub-optimal
- All methods able to synthesize all 256 fns
 - "Opt T" able to synthesize as many as "Opt":
 B. Travaglione et al., 2001
- "Opt" results symmetrical about 5-6 gates
 Function x requires one fewer gate than 256-x
 Explanation yet to be found
 - "Exor" results symmetrical about 13 gates

ichigan Englinteerint;

Conclusions

- Classical reversible circuits as special-case quantum circuits
- Existence theorems

igan Engin'eering

- Reversible De Morgan's laws
 - Future research on optimization heuristics
- Algorithm for synthesis of optimal circuits
 - Applicable to Grover's search

Thank You For Your Attention

