Overcoming Resolution- Based
Lower Bounds for SAT Solvers

DoRon B. Motter and' Igor L. Markov
University of Michigan, Ann Arbor

IWLS 2002

Motivation

*' Boolean Satisfiability (SAT) has widespread applications
= EDA: Equivalence checking, BMC, Routing, Al: Planning, etc.
= New applications are constantly emerging

& Fast SAT solvers abound (GRASP, Chaff, BerkMin)
= Highly tuned implementations improved over years

& Many small instances are still difficult to solve
*: Our Approach

= Algorithms which lead to different classes of tractable instances
= Seek improvements to these algorithms

Motivation

& Complete SAT solvers are typically based on DLL
= Resolution-based! lower bounds apply to these solvers
« Empirically Chaff, Grasp take exponential time on pigeonholes, etc.

*: Previous Work:
= \We introduced the Compressed Breadth-First Search (CBFS)

= Empirical measurements: our implementation, Cassatt, spends ©(n%)
time on pigeenhole-n instances

Pigeonhole instances are of size ©(n®)
= Analyiically: CBES refutes pigeonhole instances in poly time
. Resolution-based lower bounds do not apply to CBFS

*. This Work:
= We augment CBES with pruning based on the unit clause rule (BCP)

seconds

Empiricall Performance

Runtime for instances of the pigeon-hole problem

Cassatt
Chaff
ZRes

GRASP

CPU time, seconds

Runtime for instances of the pigeon-hole problem

Cassatt
X**4/800000 ——

Outline

. Boolean Satisfiability
* Overview off Compressed BFS

. Background
= Partial Truth' Assignments + Open Clauses
= Zero Suppressed Binary Decision Diagrams
= Boolean Constraint Propagation

& Compressed BFES
= Overview
= Example
& BCP + Compressed BFS
= Example
= Extensions

* Results

*: Conclusion

Boolean Satistiability

., Boolean Satisfiability (SAT)

= Instance: formula @ in Conjunctive Normal Form (CNF)
@ \/: set of variables {a, b, ..., n}
*: C: set of clauses
& Each clause is a set of literals over V

= Question: Is there an assignment to {a, b, ..., n} which
makes this formula true?

® Known to be NP @mplete
= Unlikely any algorithm will efficiently solve all instances

& Many practical applications in EDA

=« Bounded model checking, equivalence checking,
circuit layout

Compressed-BFS: Overview

) |n Breadth kst Search
= Store “promising” partial solutions of a given depth
« Iteratively increase depth until all variables are processed
& Main data structure is a set/queue of partial truth assignments
& In Compressed BS

= Store a set of clauses instead ofi a “promising” partial truth

assignment
& This Is enough information to determine satisfiability

= Manipulate all such sets in a compressed form
& Main data structure is a collection of sets

Background: Partial Assignments

¢p=(a+c+d)g+h)b+e+i(d+e)

@ Partial truth assignment o
= Assignment to some V [V

Cut Clauses:

= Consider any assignment to {a, b, ¢, d}> |syaddle a conceptual
@ [fit 1s valid, (a + ¢ + d) must be satisfied line separating
(g + h) Is not yet affected by this assignment | assigned variables
— The assignment only affects cut clauses from unassigned

(a _{_ e) G ones

e + f)

Background: Terminology

& Glven partial truth assignment

& Classify all clauses into:
(= Satisfied
*. At least one literal assigned true
= Violated
& All literals assigned, and not satisfied
= Open
*. 1 or more literals assigned, and no literals assigned true
\ *. Open clauses are activated but not satisfied
= Activated
Have at least one literal assigned some value
= Unit
® Have all but one literal assigned, and are open

* A valid partial truth assignment - no violated clauses

e
£
Q.
R,
©

Open Clauses

*. Straightferward! Breadth-First Search

= Maintain all valid partial truth assignments
ofi a given depth; increase depth in steps

* Valid partial truthr assignments
— sefs of open clauses
= No literals assigned
— Clause Is not activated
= All literals assigned
— Clause must be satisfied
& Because: assignment is valid = no clauses are violated
> “Cut” clause = some, but not all literals assigned
= Must be either satisfied or open
= This is determined by the partial assignment
*» Compressed Breadth-First Search
= Store sets of open clauses instead of promising assignments

Zero Suppressed Binary Decision Diagrams

@ ZDD: A directed acyclic graph (DAG) 1
= Unigue source r=tc0 {i} O f+
= [wo sinks: the O and 1 nodes

* Each node has
= Level index |
= [wo children at lower levels

AN
& T-Child and E-Child \
& Characterized by reduction rules @ @
= Ifitwo nodes have the same level index, children I f
\ 4 ° \ 4
[J

«: Merge these nodes

= Zero-suppression rule
& Eliminate nodes whose T-Child is O °

& No node with a given index =
assume a node whose T-child is O O

& ZDDs can store collections of sets
= 0 is the empty collection [
= 1 is the one-collection of the empty set {[1}
At any node f, f = f. O {i} O fg

ZIDD: Example

{1,3}12,3},
*.Collection of subsets: {3}

] {1, 3}
(23 {3}]>©»'

u {2, 3}

. {3}

7

~
'
7’

GERE

Boolean Constraint Propagation

& Repeated application of the unit clause rule

& Recall: unit clauses (withi respect to some partial
truth assignment)
=« Have one remaining unassigned literal
= Not yet satisfied

& In order for this assignment to lead to satisfiability
= [his clause must be satisfied
=« [he remaining literal must be set true

*. Boolean Constraint Propagation

= Repeatedly apply unit clause rule to deduce new
assignments

Compressed BES: Overview

*. Maintain collection| of sulbsets of open clauses

= Analogous to maintaining all _
“‘promising” partial solutions of increasing depth

« Enough information for BES on the solution tree

#. This collection of sets Is called the front
« Stored and manipulated in compressed form (ZDD)
= Assumes a clause ordering (global indices)
* Clause Indices correspond to node levels in the ZDD
« Algorithm: expand one variable at a time

= After all variables two cases possible
® The front Is [= Unsatisfiable
® The front Is {[1} = Satisfiable

Compressed BFES: An Example

(b+c+d)(-h+c+-d)a+c+d)a+hb+-c)(a+-c+d)(a+b+d)

AN J € J -
Y Y Y Y Y Y

1 2 3 Z; S} §)

* Precess variables in the order {a, b, c, d}

& Initially the front Is set to 1
= | he collection should
contain one “branch”
= [his branch should contain
no open clauses = {[1}

Compressed BFES: An Example

(b+c+d)(-h+c+-d)a+c+d)a+b+-c)(a+-c+d)(a+b+d)

AN J € J -
Y Y Y Y Y Y

1l 2 3 4 5 6

&' Precessing variable a
= Activate clauses {3, 4, 5, 6}
& Cut clauses: {3, 4, 5, 6}
= a=0
& Clauses {3, 4} become open
= a=1
&:Clauses {5, 6} become open

& ZDD contains { {3, 4}, {5, 6} }

Compressed BFES: An Example

(b+c+d)(-h+c+-d)a+c+d)a+hb+-c)(a+-c+d)(a+b+d)

AN J J J -
Y Y Y Y Y Y

Al 2 3 4 5

&' Precessing varable b

= Activate clauses {1, 2}
& Cut clauses: {1, 2, 3, 4, 5, 6}
n b =0
#:No clauses can become violated
= b Is not the end literal for any clause
#: Clause 2 is satisfied
= Don’'t need to add it
Clause 1 first becomes activated

Compressed BFES: An Example

(b+c+d)(-h+c+-d)a+c+d)a+hb+-c)(a+-c+d)(a+b+d)

AN J J J -
Y Y Y Y Y Y

Al 2 3 4 5 6

&' Precessing varable b

= Activate clauses {1, 2}
& Cut clauses: {1, 2, 3, 4, 5, 6}
= D=1
#:No clauses can become violated
= b Is not the end literal for any clause
& Existing clauses 4, 6 are satisfied

Clause 1 is satisfied
= Don’t need to add it
#: Clause 2 first becomes activated

Elf Elﬂimiﬂﬂ

Compressed BFES: An Example

(b+c+d)(-h+c+-d)a+c+d)a+hb+-c)(a+-c+d)(a+b+d)

J 0 J J -

e Y Y Y

Al 2 3 4 5 6

&' Precessing varable b

= Activate clauses {1, 2}
& Cut clauses: {1, 2, 3, 4, 5, 6}
= D=1
#:No clauses can become violated
= b Is not the end literal for any clause
& Existing clauses 4, 6 are satisfied

Clause 1 is satisfied
= Don’t need to add it
#: Clause 2 first becomes activated

~

Elf Elﬂimiﬂﬂ

Compressed BFES: An Example

(b+c+d)(b+c+ -d)(a+c+d)(a+hb+-c)(-a+ c+d)(a+b+d)

L

AN AN J . J -) an\<

Compressed BFES: An Example

(b+c+d)(-h+c+-d)a+c+d)a+hb+-c)(a+-c+d)(a+b+d)

AN AN J . J -
Y Y Y Y Y Y

1 2 3 4 5 6
&' Precessing variable c

*:No clauses become violated
= C ends 4, but c=0 satisfies it 7
Clauses 4,5 become satisfied @
No clauses become activated L

= Finish clause 4 5 O
& Cut clauses: {1, 2, 3, 5, 6} Q :
= C=0 (iad ,

Compressed BFES: An Example

(b+c+d)(-h+c+-d)a+c+d)a+hb+-c)(a+-c+d)(a+b+d)

AN AN J . J -
Y Y Y Y Y Y

1 2 3 4 5 6
&' Precessing variable c

& Clause 4 may be violated
= If c appears in the ZDD,
then it is still open
Clauses 1, 2, 3 are satisfied
* No clauses become activated

= Finish clause 4 3
& Cut clauses: {1, 2, 3, 5, 6} Q
s C=1 ’

Compressed BFES: An Example

(b+c+d)(-h+c+-d)a+c+d)a+hb+-c)(-a+-c+d)(a+b+d)

AN AN J . J -

Y Y Y Y Y

i 2 3 Z; 5 §)

¢ Precessing variable d
« Finish clauses {1, 2, 3, 5, 6}
& Cut clauses: {1, 2, 3, 5, 6}
= d= O, d=1
& All clauses are already satisfied

& Assignment doesn’t affect this
& Instance Is satisfiable

Compressed BES: Pseudocode

CompressedBEFS(Vars, Clauses)

front — 1

fori=1to |[Vars|do
front’ — front
/[IModify front to reflect x; = 1
Form sets Uy 1, Syi1, Ayt
front — front n 2Cut-Uxi.1
front — ExistAbstract(front, S; ,)
front — front O A,
/[Modify front' to reflect x; = 0
Form sets U, o, Syio: Axio
front’ — front’ n 2Cut- Uxi.0
front’” — ExistAbstract(front’, S,; ;)
front’ front’ O Ao
//Combine the two branches via Union
/land remove Subsumptions
front — front O front'

if front = 0 then
return Unsatisfiable

if front = 1 then
return Satisfiable

Boolean Constraint Propagation with CBES

o=@ +@E+T@E+c)a+B)@+bh)
1
& Consider having processed variable a only

Recall: The front consists ofi sets of open clauses

& Conilicting set of clauses
= A set of open clauses by which it is possible to derive a

contradiction by the unit clause rule
= Ex. If clauses {2, 3} are both open = ¢ and ¢ are both implied
= After variable a = {2, 3} is a conflicting set of clauses
& Conflicting sets cannot appear in the same set of open clauses
= CBFES will eventually determine this

= Repeated application of the unit clause rule may find this more
efficiently

& In this example: conflicting sets of clauses
= Clauses {2, 3} cannot appear together
= Clauses {4, 5} cannot appear together

Boolean Constraint Propagation with CBES

& Basic Idea: recursive search to find all sets of
conflicting| clauses
= For each unit clause U
& Find all clauses, violated when U is satisfied

& Find all clauses vielated when U is violated (includes U)
* Form Cartesian Product of these sets

= Can form the ZDD of all conflicting sets of clauses
& Conflicting sets cannot appear in the same set of

open clauses

= [fia set In the front contains a conflicting set
& Can prune with ZDD Subsumed Difference operator

Boolean Constraint Propagation with CBES

GetConflictZDD(Formula F', Integer Var)
fioreach clause COF'
it C has no literals (after the cut) //Then C is a violated clause
ViolCls <« ViolCls [0 C
//Find the set of variables implied by some unit clause
IVars — ImpliedVars(Units(F’))

/IFind the lowest index implied variable such that v>Var
View < UpperBound(lVars, Var)

If no such vj,,, exists
return ViolCls
Conflzdd — ViolCls

/literate over all implied variables >v

forall vaVars such that vav,,,
Z1 — GetConflictZDD(Assign(F', v=1), v)
Z0 — GetConflictZzDD(Assign(F', v=0), v)
Z~20/[/Z1
ConflzDD ~ ConflzDD [0 Z

return ConflZDD

Extending BCP/CBES

* Bounded Depth BCP

« Want conflicting sets to subsume many sets in the
front
— Should be as small as possible

& As depth of searchiincreases — number of clauses in any
conflicting sets found increases

« Search for Conflicting ZDD may be time consuming
*. BCP pruning at step k Iis similar to step k+1

= [0 help combat this, apply BCP every 2d steps

= d = depth of BCP search

Empirical Results

Cassatt

BCP 2

BCP 3

BCP 4

zChaff

0.04

0.12

0.45

1.18

>250

0.05

0.14

0.35

0.96

>250

0.03

0.15

0.59

2.01

>250

0.09

0.34

1.31

6.39

>250

0.24

0.7

2.82

15.1

>250

0.06

0.16

0.59

1.1

>250

0.04

0.15

0.74

2.97

>250

0.04

0.21

0.98

4.09

>250

0.06

0.24

1.06

5.43

>250

0.1

0.51

3.3

20.68

>250

0.03

0.07

0.28

2.6

2.13

0.06

0.13

0.36

1.24

2.01

0.06

0.12

0.37

2.03

>250

0.12

0.19

0.53

2.36

104.7

0.15

0.26

0.87

3.97

>250

0.07

0.2

0.83

497

>250

0.52

0.67

1.55

5.68

132.91

0.35

0.44

0.8

2.79

191.63

0.71

0.84

1.43

5.47

66.3

1.61

1.8

24

4.47

>250

2.66

2.88

3.62

7.99

>250

Empirical Results

Benchmark

Family
aim-100*
aim-50*
dubois*
pret*
parl6*

parl16-c*
par8*
par8-c*

Conclusions ana Ongoeing Work

= CBES runtimes on several families show great
Improvements over DLL-based solvers
= Potential for a more general purpoese combined solver

@ We introduced a BCP-based pruning into CBES

= On classes CBFES solves guickly = no further improvement
= On less structured instances = CBFS'’s runtime is improved by
the addition of a restricted BCP
& We hope to further improve performance of CBFS/BCP

= BCP reductions need not be complete:

#: Heuristic and randomized approaches can applied to find some, but
not all conflicting sets

= Can tune the application of BCP to improve performance

