MINCE: A Static Global Variable-
* Ordering for SAT and BDDs

Fadi A. Aloul, Igor L. Markov,
Karem A. Sakallah

University of Michigan

© 2001 Fadi A. Aloul, University of Michigan

$ Outline

= Hypergraph Terminology
Motivating Example
Multilevel Partitioning
MINCE Algorithm
Experimental Results
Conclusions

© 2001 Fadi A. Aloul, University of Michigan

$ Linearly-Ordered Hypergraphs

= Given a hypergraph with V vertices and E
hyperedges with a linear vertex order...

= Span of hyperedge: difference between the greatest and
smallest vertices connected by the same hyperedge

= i-th cut: number of edges crossing vertex i+0.5
= Cutwidth: maximum cut of all vertices i, i 0(0,..,n-1)

= An objective of vertex ordering: identify a linear vertex
order that minimizes the span and cutwidth of the
instance | | | | |

a b ¢ d ¢
@aee*&&ﬂoaﬁanm.ﬁmmﬁhigan

$ Bad vs. Good Vertex Orderings

v y v y
| S ——
a b c e b a € C
t t 4 (S

Total Span =8 Cutwidth=3 Total Span=4 Cutwidth=1
How does vertex reordering help?

Converting CNF Formulas to Hypergraphs:
* Variables = Vertices
* Clauses = Hyperedges

fabede)=(a+d+e)Ud(b+d)U(c+e)

© 2001 Fadi A. Aloul, University of Michigan

Related Work

Circuits with small cutwidth are theoretically
“easy” for SAT [Prasad et al. 99]

Sizes of BDDs are correlated with circuit cutwidth
[Berman 91, McMillan 92]

Extracted BDD variable orderings from linear
spectral hypergraph placement [Wood et al. 98]

This work considers average cutwidth instead of
maximum cutwidth

© 2001 Fadi A. Aloul, University of Michigan

Example

Hole-7 Instance
(clauses in red)

hole7 enfaold hole7 cnf new
1 1
09 |
08 |
0.7
06 |/
0.5 [ERHIE.
0.3
D2}
0.1 pE

PRI i SHEH i 0
0 10 20 30 40 50 ED o 10 20 30 40 50 ED

Variables Variables

Clauses
a
i
Clauses

Original Variable Order MINCE Variable Order

© 2001 Fadi A. Aloul, University of Michigan

Observation: Crossing
Minimization
TotalSpan = Zspan(e) = ZZI S#xings|= ZZI = Zcut(i)

e[E elE xCe cdC xOc i=0 | | | |
i ‘ : i
3" span(e) JV_’T—Q—W
AverageSpan = <L I By IC N
LI 8
vl ! ! o
z cut(i) £ z span(e) ! ! ! !
AverageCut =22 = o LE == * AverageSpan
V-1 V-1 E |4 =

AverageCut = % * AverageSpan Min. AverageCut « Min.AverageSpan

Known from VLSI placement:
Recursive Min-cut Bisection => Min. Total Net Length in LinPlacement
© 2001 Fadi A. Aloul, University of Michigan

Linear Placement

= Net length objective (aka “bounding box")
= For CNF instances, translates into X clause span

= 30+ years of placement research
= Recursive bisection a leading method
= Applied to SAT in this work
= CAPO: Effecient hypergraph placement software
= Caldwell, Kahng and Markov [DAC 00]
= Based on Recursive Min-cut Bisection
= Multilevel Fiduccia-Mattheyses (FM)
= Open-source, free:
http://visicad.cs.ucla.edu/software/PDtools
= Runsin: ©(Nlog?N) , Nis size of input

© 2001 Fadi A. Aloul, University of Michigan

$ Min-Cut MLFM Partitioning

= MLPart: Efficient min-cut hypergraph partitioner
= Caldwell, Kahng and Markov [ASPDAC 00]
= Outperforms hMetis (Karypis et al. [DAC 97])
= Runsin: ©(WNlogN)
= Called by CAPO

= Basic Idea:
= Group original variables '
Induce clustered hypergraphs @
<y
CPRNAY,
Cluster alD

Partition clustered hypergraphs
Refine partitioned hypegraphs

Partition & refinement by
Fiduccia-Mattheyses

Refine

#*By G. Karypis, R. Aggarwal, V. Kumar and S. Shekhar

© 2001 Fadi A. Aloul, University of Michigan

$ MINCE - Flow Diagram

[Circuit |
K/IINCE | CNF ilzstance | \

Flow

| Hypergraph |
v

Linear Min-cut Placement by
Recursive MLLFM Partitioning. e.2. CAPO

v
| Variable ordering for CNF |
v
k | Preprocessed CNF instance | /

| SAT Solver | | BDD Engine |
© 2001 Fadi A. Aloul, University of Michigan

$ Experimental Setup

= SAT engine: GRASP SAT Solver

= BDD engine: CUDD Package

= Time-out limit: 10,000 seconds

Memory limit: 500 Mb

Platform: 333 MHz Pentium II with Linux
Benchmarks: DIMACS, N-Queens, ISCAS89

© 2001 Fadi A. Aloul, University of Michigan

= SAT Results

DIMACS Benchmarks*

216

Total Runtime (sec)

DLCS MSOS Fixed MSTS DLIS MINCE

*Except f, g, par32
© 2001 Fadi A. Aloul, University of Michigan

SAT Results

Selected DIMACS Instances

100,000

O Original
10,000 = w/MN

5
© 1,000
S
>
o 100
>
<

10

1 =t

Aim Bf dub hanoi hole il6 i32 ii8 jnh parle par8 pret ssa

© 2001 Fadi A. Aloul, University of Michigan

SAT Results

Selected NQueens Instances

35,000

30,000

25,000

20,000

15,000
10,000

Total RunTime (sec)

5,000+

0+

MSOS MSTS Fixed DLIS DLCS MINCE

© 2001 Fadi A. Aloul, University of Michigan

w BDD Results

ISCAS 89 Benchmarks

Completed Instances

Fixed Random Fixed-Sift Random-Sift = MINCE

© 2001 Fadi A. Aloul, University of Michigan

Best- vs. Worst-case
& Performance

= SAT/BDD
= Worst-case: exp. Best-case: o)
= Recursive min-cut bisection placement
= Worst-case: o(nlog> N) Best-case: o(nlog® N)
= Very easy problem instances
= DLL/BDD run in near-linear time
= Vertex ordering only slows DLL/BDD
= MINCE is not helpful for easy instances

© 2001 Fadi A. Aloul, University of Michigan

$ Conclusions

= MINCE is useful in capturing the structural
properties of CNF instances

= MINCE ordering is very effective in reducing
SAT runtime time and BDD runtime/memory
requirements

= The ordering is easily generated in a
preprocessing step

= No source code modification needed
= Tools are publicly available!

© 2001 Fadi A. Aloul, University of Michigan

$ Future Work

= Further improving the MINCE algorithm
Accounting for polarities of literals in
hypergraphs

Applying the ordering to symbolic simulation

Tracking empirical correlation between
problem complexity and its cutwidth

Check out MINCE @:
http://andante.eecs.umich.edu/mince

© 2001 Fadi A. Aloul, University of Michigan

