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$ Linearly-Ordered Hypergraphs

= Given a hypergraph with V vertices and E
hyperedges with a linear vertex order...

= Span of hyperedge: difference between the greatest and
smallest vertices connected by the same hyperedge

= i-th cut: number of edges crossing vertex i+0.5
= Cutwidth: maximum cut of all vertices i, i 0(0,..,n-1)

= An objective of vertex ordering: identify a linear vertex
order that minimizes the span and cutwidth of the
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$ Bad vs. Good Vertex Orderings
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How does vertex reordering help?

Converting CNF Formulas to Hypergraphs:
* Variables = Vertices
* Clauses = Hyperedges

fabede)=(a+d+e)Ud(b+d)U(c+e)
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Related Work

Circuits with small cutwidth are theoretically
“easy” for SAT [Prasad et al. 99]

Sizes of BDDs are correlated with circuit cutwidth
[Berman 91, McMillan 92]

Extracted BDD variable orderings from linear
spectral hypergraph placement [Wood et al. 98]

This work considers average cutwidth instead of
maximum cutwidth
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Example

Hole-7 Instance
(clauses in red)
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Observation: Crossing
Minimization
TotalSpan = Zspan(e) = ZZI S#xings|= ZZI = Zcut(i)
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Known from VLSI placement:
Recursive Min-cut Bisection => Min. Total Net Length in LinPlacement
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Linear Placement

= Net length objective (aka “bounding box")
= For CNF instances, translates into X clause span

= 30+ years of placement research
= Recursive bisection a leading method
= Applied to SAT in this work
= CAPO: Effecient hypergraph placement software
= Caldwell, Kahng and Markov [DAC 00]
= Based on Recursive Min-cut Bisection
= Multilevel Fiduccia-Mattheyses (FM)
= Open-source, free:
http://visicad.cs.ucla.edu/software/PDtools
= Runsin: ©(Nlog?N) , Nis size of input
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$ Min-Cut MLFM Partitioning

= MLPart: Efficient min-cut hypergraph partitioner
= Caldwell, Kahng and Markov [ASPDAC 00]
= Outperforms hMetis (Karypis et al. [DAC 97])
= Runsin: ©(WNlogN)
= Called by CAPO

= Basic Idea:
= Group original variables '
Induce clustered hypergraphs @
<y
CPRNAY,
Cluster alD

Partition clustered hypergraphs
Refine partitioned hypegraphs

Partition & refinement by
Fiduccia-Mattheyses

Refine

#*By G. Karypis, R. Aggarwal, V. Kumar and S. Shekhar
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$ MINCE - Flow Diagram
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$ Experimental Setup

= SAT engine: GRASP SAT Solver

= BDD engine: CUDD Package

= Time-out limit: 10,000 seconds

Memory limit: 500 Mb

Platform: 333 MHz Pentium II with Linux
Benchmarks: DIMACS, N-Queens, ISCAS89
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= SAT Results

DIMACS Benchmarks*
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SAT Results

Selected DIMACS Instances
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SAT Results
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w BDD Results

ISCAS 89 Benchmarks

# Completed Instances

Fixed Random Fixed-Sift Random-Sift = MINCE
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Best- vs. Worst-case
& Performance

= SAT/BDD
= Worst-case: exp. Best-case: o)
= Recursive min-cut bisection placement
= Worst-case: o(nlog> N) Best-case: o(nlog® N)
= Very easy problem instances
= DLL/BDD run in near-linear time
= Vertex ordering only slows DLL/BDD
= MINCE is not helpful for easy instances
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$ Conclusions

= MINCE is useful in capturing the structural
properties of CNF instances

= MINCE ordering is very effective in reducing
SAT runtime time and BDD runtime/memory
requirements

= The ordering is easily generated in a
preprocessing step

= No source code modification needed
= Tools are publicly available!
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$ Future Work

= Further improving the MINCE algorithm
Accounting for polarities of literals in
hypergraphs

Applying the ordering to symbolic simulation

Tracking empirical correlation between
problem complexity and its cutwidth

Check out MINCE @:
http://andante.eecs.umich.edu/mince
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