
1

AlmostAlmost--Symmetries of GraphsSymmetries of Graphs

Igor Markov, University of MichiganIgor Markov, University of Michigan

2

Motivation 1: Want More Symmetries

• Symmetries in CP are well-defined
• We know

– How to represent symmetries
– How to find them

(or at least expect them to be given)
– How to use them

• We know they help & want more of them
• Idea: relax the notion of symmetry

– “Slightly defective” symmetries

3

Sym()=S2 Sym()=?

Motivation 2: Need More Than Symmetries

• Existing symmetry-based techniques
do not handle special-casing well
– They map variables to variables,

values to values in all cases

• Obstacle to extensions: loss of transitivity

4

Desiderata for Almost-symmetries

• Conceptually similar to symmetries
• As easy to capture
• As easy to find

(or get someone write them down for you!)

• As easy to use in symmetry-breaking
• As helpful (computationally)
• More numerous than symmetries

5

The Pigeonhole Principle

• Cannot place N objects
into N-1 slots

• Boolean formulation
– a matrix of N(N-1) 0-1 variables
– must assign each object to 1+ slot
– no two objects can be in the same slot

x11

x21

x12 x13 x14

x22 x23 x24

x31 x32 x33 x34

6

The Pigeonhole Principle

• Cannot place N objects
into N-1 slots

• Boolean formulation
– a matrix of N(N-1) 0-1 variables
– must assign each object to 1+ slot
– no two objects can be in the same slot

• Symmetries help (1985, 1996, 2003)
• A fundamental challenging problem

… or a solved template ?

x11

x21

x12 x13 x14

x22 x23 x24

x31 x32 x33 x34

7

PHP in Wire Routing

• Problem instances are formulated
essentially in Boolean terms
– each wire must be routed in some way
– no two wires can use the same track

• Using symmetry is critical
• Many instances of PHP appear as sub-

instances of larger satisfiable instances
– Syntactic symmetry is often obscured
– Conditional, local symmetries, etc

8

Almost-automorphisms of Graphs

• Automorphism: a vertex permutation that
preserves edges and vertex colors

• Try to “almost preserve” edges & colors
– Some edges can map to non-edges
– Some vertices can map to wrong colors
– How do we quantify, limit “some” ?

• Use a “chameleon color” (variables) for vertices
– Just like an * in regular expressions
– Just like don’t-cares in Boolean functions & circuits

• Similarly for edges

9

Chameleon Vertices and Edges

• Chameleon vertices must assume specific
colors so as to enable symmetries

• Chameleon edges must decide whether
they exist or not, so as to enable symms

10

Equivalent Formulations?

• Both types of almost-symmetries
must carry the same algebraic structure

• Conversion overhead: O(V 3+E 3)
– Seems impractical

• Further analysis suggests developing two
independent (but compatible) techniques

11

Structure in Almost-Symmetries

• To deal with graph automorphisms
one uses their group structure
– Provably exponential compression:

N automorphisms always captured
by ≤log2N generators

– Efficient set-like operations (∩,∈,etc)
– Stabilizer-chain algorithms
– Very fast graph-automorphism algorithms

• Almost-automorphisms do not form
– Groups, semi-groups, monoids, grouppoids

12

Structure in Almost-Automorphisms

• Clear all colors
– The resulting Aut() contains all almost-autos

• Paint chameleons using a new/unique color
– The resulting Aut() is contained in every Gi

• Consider all combos of chameleon colorings
– For each coloring, can find Aut()
– Almost-autos form a union of subgroups ∪Gi

• Can often find more compact ∪Gi expressions
– Many Gi can be trivial, equal, or subgroups of Gk
– Worst case is exponential (see Appendix A)

Aut()=S2∪ S2

13

Capturing Almost-Automorphisms

• To capture ∪Gi
– Capture each group by a list of generators

• An algorithm for finding almost-symmetries
should produce
– Lists of lists of group generators

(all lists are unordered)

• Simplified problem formulations
– Find a largest subgroup Gi

(can always express it compactly)
– Detect cases when almost-autos form a group

14

Finding Almost-automorphisms

• Naïve algorithm
– Iterate over all colorings of chameleon vertices
– Call SAUCY for every coloring to find Gi
– Discard redundant Gi

• May need to use GAP to compare groups
– The same subgroup may be captured

with different generating sets
(can’t just match lists)

– For G and H, compute generators(G∩H), reuse them
• Observation

– If the colorless graph has no symmetries,
no need to branch on colors

15

Finding Almost-automorphisms (2)

• Research challenge:
– Extend McKay’s algorithm (NAUTY)

or its derivatives (SAUCY) to solve
the graph almost-automorphism problem

– Preserve its performance in the traditional
case (no chameleons)

• Seems doable!
– Vertex-based case
– Edge-based case

16

Basic Ideas For GAA Algorithms

• McKay’s GA algorithm interleaves bran-
ching with pruning (partition refinement)
– Vertices with different degrees

can’t be mapped to each other
– Ditto for different colors
– At some point, we just have to try

mapping similar vertices to each other
– After such branching, we may be able

to prune some more (partition refinement)
• Need new steps for color instantiation

17

Designing GAA Algorithms

• Naïve algorithm: tries all color instantiations
first, then calls McKay

• Key idea 1: delay branching on colors
– E.g., what if vertices have different degrees?
– When branching, minimize further branching factor,

apply partition refinement immediately
• Key idea 2: propagate colors early

– If a class of potentially equivalent vertices
only contains chameleons and pink vertices,
make all chameleons pink (subgroup containment)

• Key idea 3: avoid branching via dominance
– If a class of potentially equivalent vertices

contains only chameleons, color all of them blue

18

Example

• Vertex degrees: 3 & 7
– Color vertex 5 blue

• Vertices 4 and 6 are
in the same class, with
blue and pink vertices
– Branch on colors (4 branches)
– Three branches yield symmetries
– One of them subsumes the rest

• Almost-symmetries
form a group in this case

• The symmetry-restoration problem

7

1

4

2

3

5

6

8

7

1

4

2

3

5

6

8

19

• The same naïve algorithm works
(branch on edges first), but is hopeless
– We must delay branching

• Major problems with chameleon edges
– Vertices have ranges of possible degrees

and cannot always be split into classes
– Partition refinement does not work anymore

• Solved in Appendix B
– Vertex-range graph, two-step partition refinement

What about edge-based almost-syms?

20

Static Almost-Symmetry-Breaking

• Almost-symmetries can be viewed
as conditional symmetries
– Symmetries with identical preconditions

can be composed
– Other symmetries may not be composable

• A. S.-B. Predicates must now include
preconditions (Π⇒Σ)
– Can now localize symmetries

to sub-instances via boundary conditions

21

Conclusions

• Almost-symmetries can be understood
and studied through graph modeling

• Vertex-based and edge-based cases
• Algebraic structure: union of subgroups ∪Gi

– Represented by lists of lists of generators

• Computational challenge: finding compact
hierarchies of generators for ∪Gi when possible
– Seems doable in both vertex- and edge-based cases

• Static almost-symmetry-breaking
is fairly straightfoward

