

Almost-Symmetries of Graphs

Igor Markov, University of Michigan

Motivation 1: Want More Symmetries

- Symmetries in CP are well-defined
- We know
 - How to represent symmetries
 - How to find them
 - (or at least expect them to be given)
 - How to use them
- We know they help & want more of them
- Idea: relax the notion of symmetry
 - "Slightly defective" symmetries

Motivation 2: Need More Than Symmetries
• Existing symmetry-based techniques
do not handle special-casing well
• They map variables to variables,
values to values in all cases
• Obstacle to extensions: loss of transitivity

$$Sym(c) = S_2$$
 $Sym(c) = ?$

Desiderata for Almost-symmetries

- Conceptually similar to symmetries
- As easy to capture
- As easy to find (or get someone write them down for you!)
- As easy to use in symmetry-breaking
- As helpful (computationally)
- More numerous than symmetries

Almost-automorphisms of Graphs

- Automorphism: *a vertex permutation that preserves edges and vertex colors*
- Try to "almost preserve" edges & colors
 - Some edges can map to non-edges
 - Some vertices can map to wrong colors
 - How do we quantify, limit "some"?
- Use a "chameleon color" (variables) for vertices
 - Just like an * in regular expressions
 - Just like don't-cares in Boolean functions & circuits
- Similarly for edges

Structure in Almost-Automorphisms

- Worst case is exponential (see Appendix A)

Finding Almost-automorphisms

- Naïve algorithm
 - Iterate over all colorings of chameleon vertices
 - Call SAUCY for every coloring to find G_i
 - Discard redundant G_i
- May need to use GAP to compare groups
 - The same subgroup may be captured with different generating sets (can't just match lists)
 - For *G* and *H*, compute generators ($G \cap H$), reuse them
- Observation
 - If the colorless graph has no symmetries, no need to branch on colors

14

- Almost-symmetries can be viewed as conditional symmetries
 - Symmetries with identical preconditions can be composed
 - Other symmetries may not be composable
- A. S.-B. Predicates must now include preconditions (Π⇒Σ)

 Can now localize symmetries to sub-instances via *boundary conditions*

Conclusions

- Almost-symmetries can be understood and studied through graph modeling
- Vertex-based and edge-based cases
- Algebraic structure: union of subgroups
 G_i G_i G_i
 Represented by lists of lists of generators
- - Seems doable in both vertex- and edge-based cases
- Static almost-symmetry-breaking is fairly straightfoward

21