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Motivation 1: Want More Symmetries

• Symmetries in CP are well-defined
• We know 

– How to represent symmetries
– How to find them

(or at least expect them to be given)
– How to use them

• We know they help & want more of them
• Idea: relax the notion of symmetry

– “Slightly defective” symmetries 
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Sym( )=S2 Sym( )=?

Motivation 2: Need More Than Symmetries

• Existing symmetry-based techniques
do not handle special-casing well
– They map variables to variables,

values to values in all cases

• Obstacle to extensions: loss of transitivity
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Desiderata for Almost-symmetries

• Conceptually similar to symmetries
• As easy to capture
• As easy to find

(or get someone write them down for you!)

• As easy to use in symmetry-breaking
• As helpful (computationally)
• More numerous than symmetries
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The Pigeonhole Principle

• Cannot place N objects 
into N-1 slots

• Boolean formulation
– a matrix of N(N-1) 0-1 variables
– must assign each object to 1+ slot
– no two objects can be in the same slot
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The Pigeonhole Principle

• Cannot place N objects 
into N-1 slots

• Boolean formulation
– a matrix of N(N-1) 0-1 variables
– must assign each object to 1+ slot
– no two objects can be in the same slot

• Symmetries help (1985, 1996, 2003)
• A fundamental challenging problem

… or a solved template ?
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PHP in Wire Routing

• Problem instances are formulated
essentially in Boolean terms
– each wire must be routed in some way
– no two wires can use the same track

• Using symmetry is critical
• Many instances of PHP appear as sub-

instances of larger satisfiable instances
– Syntactic symmetry is often obscured
– Conditional, local symmetries, etc
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Almost-automorphisms of Graphs

• Automorphism: a vertex permutation that 
preserves edges and vertex colors

• Try to “almost preserve” edges & colors
– Some edges can map to non-edges
– Some vertices can map to wrong colors
– How do we quantify, limit “some” ?

• Use a “chameleon color” (variables) for vertices
– Just like an * in regular expressions
– Just like don’t-cares in Boolean functions & circuits

• Similarly for edges
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Chameleon Vertices and Edges

• Chameleon vertices must assume specific 
colors so as to enable symmetries

• Chameleon edges must decide whether 
they exist or not, so as to enable symms
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Equivalent Formulations?

• Both types of almost-symmetries
must carry the same algebraic structure

• Conversion overhead: O(V 3+E 3)
– Seems impractical

• Further analysis suggests developing two
independent (but compatible) techniques
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Structure in Almost-Symmetries

• To deal with graph automorphisms
one uses their group structure
– Provably exponential compression:

N automorphisms always captured
by ≤log2N generators

– Efficient set-like operations ( ∩,∈,etc)
– Stabilizer-chain algorithms
– Very fast graph-automorphism algorithms

• Almost-automorphisms do not form
– Groups, semi-groups, monoids, grouppoids
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Structure in Almost-Automorphisms

• Clear all colors
– The resulting Aut( ) contains all almost-autos

• Paint chameleons using a new/unique color
– The resulting Aut( ) is contained in every Gi

• Consider all combos of chameleon colorings
– For each coloring, can find Aut( )
– Almost-autos form a union of subgroups ∪Gi

• Can often find more compact  ∪Gi expressions
– Many Gi can be trivial, equal, or subgroups of Gk
– Worst case is exponential (see Appendix A)

Aut(           )=S2∪ S2
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Capturing Almost-Automorphisms

• To capture ∪Gi
– Capture each group by a list of generators

• An algorithm for finding almost-symmetries 
should produce
– Lists of lists of group generators

(all lists are unordered)

• Simplified problem formulations
– Find a largest subgroup Gi

(can always express it compactly)
– Detect cases when almost-autos form a group
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Finding Almost-automorphisms

• Naïve algorithm
– Iterate over all colorings of chameleon vertices
– Call SAUCY for every coloring to find Gi
– Discard redundant Gi

• May need to use GAP to compare groups
– The same subgroup may be captured

with different generating sets
(can’t just match lists)

– For G and H, compute generators(G∩H), reuse them
• Observation

– If the colorless graph has no symmetries,
no need to branch on colors
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Finding Almost-automorphisms (2)

• Research challenge:
– Extend McKay’s algorithm (NAUTY)

or its derivatives (SAUCY) to solve
the graph almost-automorphism problem

– Preserve its performance in the traditional 
case (no chameleons)

• Seems doable!
– Vertex-based case 
– Edge-based case
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Basic Ideas For GAA Algorithms

• McKay’s GA algorithm interleaves bran-
ching with pruning (partition refinement)
– Vertices with different degrees

can’t be mapped to each other
– Ditto for different colors
– At some point, we just have to try

mapping similar vertices to each other
– After such branching, we may be able

to prune some more (partition refinement)
• Need new steps for color instantiation
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Designing GAA Algorithms

• Naïve algorithm: tries all color instantiations 
first, then calls McKay

• Key idea 1: delay branching on colors
– E.g., what if vertices have different degrees?
– When branching, minimize further branching factor,

apply partition refinement immediately
• Key idea 2: propagate colors early

– If a class of potentially equivalent vertices
only contains chameleons and pink vertices,
make all chameleons pink (subgroup containment)

• Key idea 3: avoid branching via dominance
– If a class of potentially equivalent vertices

contains only chameleons, color all of them blue
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Example

• Vertex degrees: 3 & 7
– Color vertex 5 blue

• Vertices 4 and 6 are
in the same class, with
blue and pink vertices
– Branch on colors (4 branches)
– Three branches yield symmetries
– One of them subsumes the rest

• Almost-symmetries 
form a group in this case

• The symmetry-restoration problem
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• The same naïve algorithm works
(branch on edges first), but is hopeless
– We must delay branching

• Major problems with chameleon edges
– Vertices have ranges of possible degrees

and cannot always be split into classes
– Partition refinement does not work anymore 

• Solved in Appendix B
– Vertex-range graph, two-step partition refinement

What about edge-based almost-syms?
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Static Almost-Symmetry-Breaking

• Almost-symmetries can be viewed 
as conditional symmetries
– Symmetries with identical preconditions

can be composed
– Other symmetries may not be composable

• A. S.-B. Predicates must now include 
preconditions (Π⇒Σ)
– Can now localize symmetries 

to sub-instances via boundary conditions
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Conclusions

• Almost-symmetries can be understood 
and studied through graph modeling

• Vertex-based and edge-based cases
• Algebraic structure: union of subgroups ∪Gi

– Represented by lists of lists of generators

• Computational challenge: finding compact 
hierarchies of generators for ∪Gi when possible
– Seems doable in both vertex- and edge-based cases

• Static almost-symmetry-breaking
is fairly straightfoward


