Fixed-outline Floorplanning Through Better Local Search

Saurabh Adya
Igor Markov
(University of Michigan)

Outline

- Classical floorplanning vs. Modern hierarchical floorplanning
- Motivation for new methods
- · Better local search
 - Slack-based moves
 - Fixed-outline floorplans using slack-based moves
- Results
- · Conclusion

Classical Floorplanning

- · Objectives: Min Area & Wirelength
- No fixed-outline constraints
- Assumes a variable-die layout and "flat" floorplanning instance
- Representations: O-Tree, B*-Tree,
 Sequence Pair, TCG, CBL, ECBL etc

Need For Hierarchical Floorplanning

Fixed Outline Constraints

- Not a minimization problem
- · Rather a constraint satisfaction problem

Modern Hierarchical Floorplanning

- Target designs: large ASICs, SOCs
 - E.g. multi-million gate designs like graphics cards
 - Hierarchical floorplanning ⇒ Fixed outline constraints
 - Fixed-die layout [Kahng, ISPD '00]
- Classical floorplanning still important at top level
- · Fixed-outline required at lower levels
- Stronger neighborhood structures helpful
 - Better guide search

Motivation For New Methods

- Existing floorplanners use simulated annealing framework
- · Floorplanning with constraints
 - Pre-placed constraints [Young et al, ICCAD '98]
 - Range constraints [Young et al, ISPD '99]
 - Boundary constraints [Young et al, ASPDAC '99]
 - Abutment constraints [Hong et al, DAC '01]
- Additionaly need to handle fixedoutline constraints [Kahng, ISPD '00]

Sequence Pair (SP) Representation

- Proposed by Murata, Fujiyoshi, Nakatake, Kajitani [TCAD '97]
- Two permutations of N blocks capture the geometric relation between each pair of blocks

$$(\langle ...a..b...\rangle, \langle ...a..b...\rangle) \Rightarrow$$
 a is to the left of b $(\langle ...a..b...\rangle, \langle ...b...a...\rangle) \Rightarrow$ a is above b

- Horizontal (Vertical) constraint graphs
 - Edge a → b iff a is to the left of b (a is above b)
- Compute block locations by topological traversal
 - O(n²) complexity
 - Slow

Left

SP Evaluation Via Longest Common Subsequence

- Proposed by Tang, Tian, Wong [DATE '00]
- · Longest Common weighted Subsequence (LCS)
 - Weights are copied from block widths (heights)
 - Length of LCS equals x-span (y-span)
- Floorplan evaluation reduces to LCS computation
- · LCS computation algorithms
 - $O(n^2)$ complexity: fast for small floorplans
 - · Very little work in inner loop
 - O(n log n) complexity
 - O(n log log n) complexity [ASPDAC '01]

Variables in LCS computation

- Sequence Pair <X, Y>
- MatchX: position of blocks in X seq
- · Matchy: position of blocks in Y seq
- · Length: maintains the LCS value
- Position: records the position of each block

SP Evaluation Using LCS

```
LCS_ORIG(X,Y, Position, weights) /*Position[1...N] records block positions*/
       for i = 1 to N /*Initialize Match Array match*/
      begin
        match[X[i]].x = i;
       match[Y[i]], y = i
      end
      for i = 1 to N /*Initialize Length Array Length with 0*/
       Length[i] = 0;
      for i = 1 to N
10
     begin
     b = X[i];
11
     p = match[b].y;
12
13 |Position|b| = Length|p|;
14
    t = Position[b] + weights(b);
15
     for j = p to N
         if (i > Length[j]) then Length[j] = t;
16
17
          else break:
18
      end
    return Length N;
19
```

Evaluation of *x*-locations by LCS computation

Sequence Pair <X,Y> = <FEDBCA, ABFECD>

Length Array

1 2 3 4 5 6

0 0 0 0 0

Block Positions

A B C D E F

0

4 0

6 4 0

6 4 0

0 6 6 4 0

0 0 6 6 4 0

Floorplan "Slack"

x-Slack Computation

Better Local Search

- · Floorplan "Slack" Computation
 - Applicable to any evaluation method which packs left to right and right to left
 - x-slack for a block represents the x-whitespace
 - Analogy with Static Timing Analysis
- · Blocks with zero slack lie on "critical paths"
- Observation: Only moves of blocks with zero x-slack (y-slack) can reduce the floorplan span
- Slack-based moves helpful for:
 - Satisfying a fixed-outline (this work)
 - Handling soft blocks (see source code)

Example: A Slack-based Move

Fixed-outline Floorplanning

- Find target aspect ratio of fixed outline
- · During annealing track current aspect ratio
- Apply slack-based moves if current aspect ratio too far from target aspect ratio
 - (targetAR currAR)/targetAR > 0.005
- A sample slack-based move
 - Find block A with zero slack in one dimension
 - Find block B with large slack in other dimension
 - Place A close to B
- · Different slack-based moves are possible

Fixed-outline Floorplanning (contd.)

Objective Functions

- Main framework: Simulated Annealing (SA)
- Need an objective
 - Classical min-area objective appears inadequate
- Choose one of 3 objective functions
 - Min area
 - Min (excessive length+ excessive width)
 - Min (max of excessive(length, width))
- Empirical winner (shown later)
 - Min (excessive length+ excessive width)

Implementation

- · Implementation is in C++
 - Compiled with g++ 2.95.2 03
- · Hardware
 - 800 MHz PC/Intel system
- · Min area results competitive with latest reported

Circuit	Min/Avg	Min/Avg	Avg Time
	Area (mm²)	deadspace	(sec)
Apte	47.07/48.14	1.08/3.28	4
Xerox	19.83/20.73	2.42/6.65	3
Нр	9.14/9.49	3.39/6.95	4
Ami33	1.19/1.23	2.85/6.01	9
Ami49	37.27/38.01	4.91/6.76	16

Results

- Without slack-based moves
 - Not able to satisfy fixed-outline constraints
- With slack-based moves
 - Fixed-outline success rates for ami49

Conclusion

- Fixed-outline floorplanning harder than min area floorplanning
- Known algorithms cannot address fixedoutline constraints
- Slack-based moves help
- New objectives help
- · Source code available at:
 - http://www.vlsicad.eecs.umich.edu/BK/parquet
- Ongoing work:
 - Fixed-outline floorplanning with wirelength minimization