
Unification of Partitioning,
Placement and Floorplanning

Saurabh N. Adya,
Shubhyant Chaturvedi, Jarrod A. Roy,

David A. Papa, and Igor L. Markov

Outline
� Introduction
� Comparisons of classical techniques

� Partitioning, floorplanning, and placement

� Unification

� Application to large-scale floorplanning

� Application to mixed-size placement

� Application to free shape floorplanning

� Our implementation
� Summary

“Hard macros will revolutionize SoC design”
Enno Wein & Jacques Benkoski, EEDesign, Aug 20, 2004

Figure 1 — Growth in the number of hard macros in SoC designs Figure 2 — Hard macros vs. standard cell area

� Hundreds of predesigned macros

� Embedded memories, analog circuitry, IP blocks

� Existing layout tools are having problems

� Macro placement is usually separate from
standard cell placement (done once & never repeated)

� Lower utilization, larger dies, lower yield, higher cost

From a “Sea of Cells”
to a “Sea of Hard Macros”

Images from EEDesign, August 20, 2004

Review: Partitioning & Floorplanning

� Partitioning: breaks up the netlist into modules

�

Facilitates a hierarchical design methodology
(e.g., for placers that do not scale well)

� Floorplanning: seeks non-overlapping locations
for modules with fixed & flexible dims (hard & soft)

�

Objectives: minimize area and interconnect

�

“Variable-die” or “fixed-die” (full chip or a partition)

� Partitioning & floorplanning together
facilitate early estimation of interconnect

� Estimates useful in logic synthesis

Review: Placement vs Floorplanning

� Mathematically, placement and
floorplanning (FP) are the same problem

� Seek module locations

� Must avoid overlaps between modules

� Must observe region constraints

� Seek to minimize interconnect (power)

� Seek to satisfy delay constraints
� Main differences

� Scale (number of objects) and algorithms
� This work: a unified tool (floorplacer)

can dynamically invoke FP or partitioning

etc.

Global Placement
by Recursive Min-cut Partitioning
1 2

3 4

Placement
bin

End-case
placement by

branch-and-bound

� Placers using min-cut bisection: Capo,
FengShui, IBM CPlace, Cadence QPlace

Std-cell Design Mixed-size DesignBlock-based Design

� Large rectangles can represent

�

Intellectual Property (IP): hard or soft

�

Macros, memories, data-paths, analog modules

�

Modules of unsynthesized logic

Cadence SEDSM/QPlace on IBM02
↓ v. 5.1.67 (2002) versus ↓ v. 5.4.126 (2004)

YesYesYesNoHandling length bounds

YesYesYesYesHandling net weights

YesNoYesYes
Support for soft

rectangular blocks

YesNoLimitedYesSupport for non-
rectangular blocks

YesNoYesNo
Can optimize orientation

of modules

YesYesN/ANoRoutability optimization

YesNoYesYesCan handle large modules

YesNoYesNo
Explicit non-overlapping

constraints

YesYesNoN/AScalable Wirelength

YesYesNoYesScalable Runtime

FloorplacersPlacersFloor-
planners↓Characteristics

Floorplacement
Min-cut
Partitioners

Observe: Min-cut Placement
Produces Slicing Floorplans

Slicing
Floorplan!

� Using this effect in floorplanning
may reduce run-time & wirelength
by combining partitioning & FPing

� Recall: traditional floorplanners
use Simulated Annealing

� We are not giving up non-slicing FPs either!

Our Approach: Direct Integration
of Placement & Floorplanning

� Perform top-down min-cut placement

� Fall back on floorplanning when necessary

� many “local” calls to a floorplanner

� In rare cases, packing may be infeasible

� What can/should be done then?

� Example: to solve mixed-size placement,
can start with several slicing cuts

� Eventually may need to pack blocks
(when exactly?)

� Call fixed-outline floorplanning

Placement by Recursive Bisection
+ Fixed-outline floorplanning

etc.

Placement bin
needs

Floorplanning

Example (Min-cut Floorplacement)

Cut-line
(min-cut)

Placement
bin needs

floorplanningMerge w
Sibling &

Re-floorplan

Our Floorplacement Algorithm
Variables: Queue of placement bins
Initialize queue with top-level placement bin

1 While (queue not empty)
2 Dequeue a bin
3 If bin has large/many macros or is marked as merged
4 Cluster std-cells into soft macros
5 Use fixed-outline floorplanner to pack all macros (soft+hard)
6 If fixed-outline floorplanning succeeds
7 Fix macros and remove sites underneath the macros
8 Else
9 Undo one partition decision and merge bin with sibling
10 Mark new bin as merged and enqueue
11 Else If bin small enough
12 Process end case
13 Else
14 Bi-partition the bin into smaller bins
15 Enqueue each child bin

Lines 3-10 are different from traditional min-cut placement

Condition empirically determined

Early Criteria for Block Packing

� Large-macro tests (used to improve runtime)

�

At least 1 macro does not fit in child bins

�

<30 macros total, with total area > 80% of bin area

� What if fixed-outline floorplanning fails ?

� Return to previous level of placement hierarchy

� Merge two child bins to form a parent bin

� Try area-only floorplanning

�

Else final placement has overlaps
(can try legalizing it at the end!)

� Above conditions detect block-based designs,
std-cell and mixed-size designs

Free-Shape Floorplanning
(see details in the paper)

55.0%157548350593n100

56.5%87957202240n50

47.5%469476895560ami49

40.1%4607276987ami33

Improvement
in HPWL

Capo 9.0
(free-shape)

HPWL

Parquet2.0
(rectangles)

HPWL
Circuit

� Shorter interconnect can improve timing & power

New Benchmarks: IBM Mixed-Size wPins

� IBM-MixedSize 2002 (IBM-MS) suite

� All large modules are square

� All pins for modules are in the center

� The new suite (IBM-MS w Pins)

� Non-square blocks (aspect ratios ∈∈∈∈ [0.5,2.0])

� Pins uniformly distributed around cell periphery

� URL:

�� � � � � ��� 	�
 ��
 � ��� � �

 � � � ��
 �
� � � � �� � �� � �� �� � � � �
 � �

 0

 500

 1000

 1500

 2000

 2500

 0 500 1000 1500 2000 2500

Capo HPWL= 2.55e+06, #Cells= 12752, #Nets= 14111

 0

 500

 1000

 1500

 2000

 2500

 0 500 1000 1500 2000 2500

 FS26 HPWL= 2.62e+06, #Cells= 12752, #Nets= 14111

Capo
9.0

Feng
Shui
2.6

N
ew

 M
-S

 B
en

ch
m

ar
ks

 W
ith

 R
ou

tin
g

In
fo

� D
er

iv
ed

 fr
om

 c
irc

ui
ts

 p
os

te
d

on
lin

e
by

 F
ar

ad
ay

 C
or

p.

� R
o

u
ti

n
g

 in
fo

rm
at

io
n

 p
ro

vi
d

ed
 t

o
 r

u
n

 C
ad

en
ce

 W
ar

p
R

o
u

te

�
� ��
��
����
�	�

��

���
���
� �
�
�
��
� �
��
�� �
�� �
�� �
��
��
�� �
��

37
.3

1
7

94
.0

9
62

7
34

03
4

32
61

5
R

IS
C

2

6.
96

2
90

.0
5

84
4

28
43

1
26

27
9

D
S

P
2

41
.9

9
7

93
.9

4
62

7
34

03
4

32
61

5
R

IS
C

1

21
.9

8
2

90
.6

6
84

4
28

44
7

26
29

9
D

S
P

1

0
0

95
.4

3
94

8
13

25
6

11
73

4
D

M
A

%
A

re
a

in
 m

ac
ro

s
#M

ac
ro

s
U

til
iz

at
io

n
#I

O
’s

#N
et

s
#N

od
es

� C
irc

ui
t

-400000-300000-200000-100000 0 100000 200000 300000 400000 -400000

-300000

-200000

-100000

 0

 100000

 200000

 300000

 400000

DS
P1

-400000-300000-200000-100000 0 100000 200000 300000 400000 -400000

-300000

-200000

-100000

 0

 100000

 200000

 300000

 400000

D
SP

2

-500000-400000-300000-200000-100000 0 100000 200000 300000 400000 500000 -500000

-400000

-300000

-200000

-100000

 0

 100000

 200000

 300000

 400000

 500000

 R
IS

C2

-600000-400000-200000 0 200000 400000 600000 -600000

-400000

-200000

 0

 200000

 400000

 600000

RI
SC

1
D

S
P

1
D

S
P

2
R

IS
C

1
R

IS
C

2

Capo 9.0

� http://v l s i c a d . e e c s . u m i c h. e d u /B K /P D to o l s /

� Source code available for free, for all uses

� Linux (32/64 bit), Solaris (32/64), Windows (32)

� Reads/writes LEF/DEF

� Bridge to OpenAccess 2.2

� Placements typically routable (e.g., IBMv2 BMs)

� Optimization of soft macros

� Obstacles are supported (see DAC ’00 paper)

� Blockages are converted to obstacles

� Placing macros around fixed obstacles is non-trivial
(sometimes causes overlap, but we are working on this)

Results for Block-Based Designs

325.2163.62433.9275.69300n300

327.4256.82240.6162.28200n200

210.5032.3950.1234.53100n100

15.3020.348.1620.7750n50

11.8916.932.3517.3830n30

00.375.570.275.5810n10

Min-Cut
Levels

Time
(sec)

HPWL
Time
(sec)

HPWL

Capo 9.0Parquet 2.1

#BlocksCircuit

Up to 16% less interconnect, 20x faster

(GSRC)

Results: Mixed-size P&R

OCOCOC2520951121.31916.33333020.7815.6RISC2

0611.6109.20511.199.20612.049.9DSP2

OCOCOC3019.901621.52115.731121.6716.7RISC1

0814.11410.71511.7249.80512.7510.5DSP1

036.364.6035.724.4036.314.7DMA

(min)(e8)(min)(e8)(min)(e8)(min)(e8)(min)(e8)(min)(e8)
Viol

TimeWLTimeWL

Viol

TimeWLTimeWL

Viol

TimeWLTimeWL

RoutePlaceRoutePlaceRoutePlace

FengShui 2.6 6/17/04Capo 9.0 -feedbackSEUltra - Qplace(v5.4.126)

�

Ckt

•Capo placements routable, have the best wirelength in all but one benchmark

Sample Placements

Capo
9.0

Feng
Shui
2.6

-400000

-300000

-200000

-100000

 0

 100000

 200000

 300000

 400000

-400000 -300000 -200000 -100000 0 100000 200000 300000 400000

 DSP1 HPWL= 10.98e+08

-400000

-300000

-200000

-100000

 0

 100000

 200000

 300000

 400000

-400000 -300000 -200000 -100000 0 100000 200000 300000 400000

DSP1 HPWL= 9.84e+08

-500000

-400000

-300000

-200000

-100000

 0

 100000

 200000

 300000

 400000

 500000

-1e+06 -800000 -600000 -400000 -200000 0 200000 400000 600000

RISC2_FS HPWL=209.88e+08

-500000

-400000

-300000

-200000

-100000

 0

 100000

 200000

 300000

 400000

 500000

-500000 -400000 -300000 -200000 -100000 0 100000 200000 300000 400000 500000

 RISC2

Results on Popular IBM-MS BM’s

-1.3%0%-3.4%--19.7%21.7%15.8%--
IBM-MSwPins

(new)

-2.0%0%-7.9%14.2%14.7%19.8%12.2%92.8%
IBM-MS

(ISPD 02)

best-of-26/17/04ECOCapo(2004)(2002)

-feedback-feedbackv2.6mPGKraftwerkParquet+v5.4.126v5.1.67Benchmark Suite

Capo v9.0Capo v9.0
Feng-
Shui

Capo+Capo+SEUltraSEUltra

•Percentages represent differences in HPWL with respect to Capo v9.0

•Positive percentages indicate larger wirelength than Capo

•Negative percentages mean smaller wirelength == better performance

•Note that FengShui 2.6 placements are packed to an edge of the core

•In practical applications, may need to be spread out for routing

Capo 9.0 Runtime Breakdown
(IBM01 mixed-size w pins, 2.4GHz Pentium4)

Speed: 4.3K cells & macros / minute (near-linear scaling)
6.3K cells / minute (near-linear scaling)

Summary

� Min-cut floorplacement

�

unifies partitioning, floorplanning & placement

� A working floorplacer is now available (Capo9.0),
competitive in these categories

�

Geometric multi-way partitioner

�

Fixed-outline floorplanner with interconnect optimization

�

Large-scale standard-cell and mixed-size placer

�

Free-shape floorplanner (places & shapes modules)

� New benchmarks

�

IBM 01-18 mixed-size with non-zero pin offsets
(and non-square blocks)

�

Faraday circuits: complete P&R benchmarks w embed. memories

� Curr. work: adapting floorplacement in design flows

Thank You !

Fixed Outline Floorplanning

� Not an area minimization problem

�

Rather a constraint satisfaction problem

�

“Classical Floorplanning Considered Harmful”
[Kahng, ISPD `00]

� Sample tool: Parquet [ICCD`01, TVLSI`03]

x-span

y-
sp

an

��

Capo 9.0 Fengshui2.6

Why Mixed-size Placement is Difficult

� Mixed-size placement is at least as hard as

�

Standard cell placement (many small movable modules)

�

Floorplanning (large, bulky modules are difficult to pack,
especially on a fixed die!)

� Typical optimization heuristics are move-based

�

Each move is “local”, i.e., affects few other objects

�

However, large modules affect many other modules

�

Some moves have ripple-effect on small cells

� Removing overlaps after global placement
is not easy, invalidates top-down estimation

� Need correct-by-construction methodologies

Integrated Partitioning,
Floorplanning and Placement
� Traditional design flows

apply separate optimizations

� Mostly a scalability concern for old algorithms

� New generation of fast min-cut placers
enable an integrated approach

� A min-cut partitioner is part of the placer

� Shifting cut-lines perform floorplanning

� End result: locations of modules (a placement)

Classical Floorplanning

� Seeks non-overlapping locations
of hard and soft blocks

� Objectives: minimize area and/or wirelength

� Core area not pre-defined (variable-die layout)

� Floorplan representations:

�

Location-based versus topological

�

O-Tree, B*-Tree, Sequence Pair, TCG, CBL etc

�

We use SP, but our methods are generally
applicable

� Simulated Annealing (SA) used for optimization

