# **Unification of Partitioning, Placement and Floorplanning**

### Saurabh N. Adya, Shubhyant Chaturvedi, Jarrod A. Roy, David A. Papa, and Igor L. Markov





MichiganEngIneerIng

## Outline

### Introduction

Comparisons of classical techniques
 Partitioning, floorplanning, and placement

### Unification

- Application to large-scale floorplanning
   Application to mixed-size placement
   Application to free shape floorplanning
- Our implementation
- Summary

### "Hard macros will revolutionize SoC design"

Enno Wein & Jacques Benkoski, EEDesign, Aug 20, 2004

Hundreds of predesigned macros

Embedded memories, analog circuitry, IP blocks

Existing layout tools are having problems

 Macro placement is usually separate from standard cell placement (done once & never repeated)
 Lower utilization, larger dies, lower yield, higher cost



### From a "Sea of Cells" to a "Sea of Hard Macros"

Images from *EEDesign*, August 20, 2004





### Review: Partitioning & Floorplanning

- Partitioning: breaks up the netlist into modules
   Facilitates a hierarchical design methodology (e.g., for placers that do not scale well)
- Floorplanning: seeks non-overlapping locations for modules with fixed & flexible dims (*hard* & *soft*)
   Objectives: minimize area and interconnect
   "Variable-die" or "fixed-die" (full chip or a partition)
   Partitioning & floorplanning together
  - facilitate early estimation of interconnect
    - □ Estimates useful in logic synthesis

### Review: Placement vs Floorplanning

- Mathematically, placement and floorplanning (FP) are the same problem
   Seek module locations
   Must avoid overlaps between modules
   Must observe region constraints
   Seek to minimize interconnect (power)
   Seek to satisfy delay constraints
   Main differences
  - □ Scale (number of objects) and algorithms
- This work: <u>a unified tool (floorplacer)</u> <u>can dynamically invoke FP or partitioning</u>

## Global Placement by Recursive Min-cut Partitioning



Placers using min-cut bisection: Capo, FengShui, IBM CPlace, Cadence QPlace

#### **Block-based Design**

**Std-cell Design** 

#### **Mixed-size Design**





- Large rectangles can represent
  - □ Intellectual Property (IP): hard or soft
  - □ Macros, memories, data-paths, analog modules
  - □ Modules of unsynthesized logic

## Cadence SEDSM/QPlace on IBM02

↓ v. 5.1.67 (2002) versus ↓ v. 5.4.126 (2004)



# Floorplacement

| ↓ <u>Characteristics</u>               | Min-cut<br>Partitioners | Floor-<br>planners | Placers | Floorplacers |
|----------------------------------------|-------------------------|--------------------|---------|--------------|
| Scalable Runtime                       | Yes                     | No                 | Yes     | Yes          |
| Scalable Wirelength                    | N/A                     | No                 | Yes     | Yes          |
| Explicit non-overlapping constraints   | No                      | Yes                | No      | Yes          |
| Can handle large modules               | Yes                     | Yes                | No      | Yes          |
| Routability optimization               | No                      | N/A                | Yes     | Yes          |
| Can optimize orientation of modules    | No                      | Yes                | No      | Yes          |
| Support for non-<br>rectangular blocks | Yes                     | Limited            | No      | Yes          |
| Support for soft rectangular blocks    | Yes                     | Yes                | No      | Yes          |
| Handling net weights                   | Yes                     | Yes                | Yes     | Yes          |
| Handling length bounds                 | No                      | Yes                | Yes     | Yes          |

## Observe: Min-cut Placement Produces Slicing Floorplans



Using this effect in floorplanning may <u>reduce run-time & wirelength</u> by combining partitioning & FPing



- Recall: traditional floorplanners use Simulated Annealing
- We are not giving up non-slicing FPs either!

# Our Approach: Direct Integration of Placement & Floorplanning

- Perform top-down min-cut placement
- Fall back on floorplanning when necessary
   many "local" calls to a floorplanner
   In rare cases, packing may be infeasible
   What can/should be done then?
- Example: to solve mixed-size placement, can start with several slicing cuts
  - Eventually may need to pack blocks (when exactly?)
  - □ Call fixed-outline floorplanning

## Placement by Recursive Bisection + Fixed-outline floorplanning



### Example (Min-cut Floorplacement)



## **Our Floorplacement Algorithm**

Variables: Queue of placement bins Initialize queue with top-level placement bin

- 1 While (queue not empty)
- 2 Dequeue a bin **Condition empirically determined**
- 3 If bin has large/many macros or is marked as *merged*
- 4 **Cluster std-cells into soft macros**
- 5 Use fixed-outline floorplanner to pack all macros (soft+hard)
  6 If fixed-outline floorplanning succeeds
  - Fix macros and remove sites underneath the macros Else
    - Undo one partition decision and merge bin with sibling Mark new bin as *merged* and enqueue
- 10Mark new bin as merged and end11Else If bin small enough
- 12 Process end case
- 13 Else

7

8

9

- 14 Bi-partition the bin into smaller bins
- 15 Enqueue each child bin Lines 3-10 are different from traditional min-cut placement

# Early Criteria for Block Packing

- Large-macro tests (used to improve runtime)
   At least 1 macro does not fit in child bins
   <30 macros total, with total area > 80% of bin area
- What if fixed-outline floorplanning fails ?
  - □ Return to previous level of placement hierarchy
    - Merge two child bins to form a parent bin
  - □ Try area-only floorplanning
  - Else final placement has overlaps (can try legalizing it at the end!)
- Above conditions detect block-based designs, std-cell and mixed-size designs

# Free-Shape Floorplanning (see details in the paper)



Shorter interconnect can improve timing & power

### New Benchmarks: IBM Mixed-Size wPins

- IBM-MixedSize 2002 (IBM-MS) suite
  - □ All large modules are square
  - □ All pins for modules are in the center
- The new suite (IBM-MS w Pins)
  - □ Non-square blocks (aspect ratios ∈ [0.5,2.0])
  - Pins uniformly distributed around cell periphery
- URL: http://vlsicad.eecs.umich.edu/BK/ICCAD04bench/



| Info   |
|--------|
| uting  |
| n Rol  |
| With   |
| arks   |
| nchmar |
| Ber    |
| ν-Σ /  |
| New    |

- Derived from circuits posted online by Faraday Corp.
- Routing information provided to run Cadence WarpRoute
  - http://vlsicad.eecs.umich.edu/BK/ICCAD04bench/

| ↓ Circuit    | #Nodes | #Nets | #IO's | Utilization | #Macros | %Area in macros |
|--------------|--------|-------|-------|-------------|---------|-----------------|
| DMA          | 11734  | 13256 | 948   | 95.43       | 0       | 0               |
| DSP1         | 26299  | 28447 | 844   | 99.06       | 2       | 21.98           |
| RISC1        | 32615  | 34034 | 627   | 93.94       | 2       | 41.99           |
| DSP2         | 26279  | 28431 | 844   | 90.05       | 2       | 6.96            |
| <b>RISC2</b> | 32615  | 34034 | 627   | 94.09       | 7       | 37.31           |



## Capo 9.0

- http://vlsicad.eecs.umich.edu/BK/PDtools/
- Source code available for free, for all uses
   Linux (32/64 bit), Solaris (32/64), Windows (32)
- Reads/writes LEF/DEF
- Bridge to OpenAccess 2.2
- Placements typically routable (e.g., IBMv2 BMs)
- Optimization of soft macros
- Obstacles are supported (see DAC '00 paper)
  - □ Blockages are converted to obstacles
  - Placing macros around fixed obstacles is non-trivial (sometimes causes overlap, but we are working on this)

### **Results for Block-Based Designs**

|                   |         | Parqu | uet 2.1       |       | Capo 9        | 0.0                 |  |
|-------------------|---------|-------|---------------|-------|---------------|---------------------|--|
| Circuit<br>(GSRC) | #Blocks | HPWL  | Time<br>(sec) | HPWL  | Time<br>(sec) | # Min-Cut<br>Levels |  |
| n10               | 10      | 5.58  | 0.27          | 5.57  | 0.37          | 0                   |  |
| n30               | 30      | 17.38 | 2.35          | 16.93 | 1.89          | 1                   |  |
| n50               | 50      | 20.77 | 8.16          | 20.34 | 5.30          | 1                   |  |
| n100              | 100     | 34.53 | 50.12         | 32.39 | 10.50         | 2                   |  |
| n200              | 200     | 62.28 | 240.61        | 56.82 | 27.42         | 3                   |  |
| n300              | 300     | 75.69 | 433.92        | 63.62 | 25.21         | 3                   |  |

Up to 16% less interconnect, 20x faster

## Results: Mixed-size P&R

|       | SEU  | ltra - C | place | (v5.4.′ | 126) | C    | apo 9. | 0 -feec | lback |      | F    | engSh | ui 2.6 6 | 6/17/04 | 1    |
|-------|------|----------|-------|---------|------|------|--------|---------|-------|------|------|-------|----------|---------|------|
|       | Pla  | ace      |       | Route   |      | Pla  | се     |         | Route |      | Pla  | ace   | F        | Route   |      |
| ↓Ckt  | WL   | Time     | WL    | Time    |      | WL   | Time   | WL      | Time  |      | WL   | Time  | WL       | Time    |      |
|       | (e8) | (min)    | (e8)  | (min)   | Viol | (e8) | (min)  | (e8)    | (min) | Viol | (e8) | (min) | (e8)     | (min)   | Viol |
| DMA   | 4.7  | 1        | 6.3   | 3       | 0    | 4.4  | 2      | 5.7     | 3     | 0    | 4.6  | 6     | 6.3      | 3       | 0    |
| DSP1  | 10.5 | 5        | 12.7  | 5       | 0    | 9.8  | 24     | 11.7    | 5     | 1    | 10.7 | 14    | 14.1     | 8       | 0    |
| RISC1 | 16.7 | 7        | 21.6  | 11      | 3    | 15.7 | 21     | 21.5    | 16    | 0    | 19.9 | 30    | OC       | OC      | OC   |
| DSP2  | 9.9  | 4        | 12.0  | 6       | 0    | 9.2  | 9      | 11.1    | 5     | 0    | 9.2  | 10    | 11.6     | 6       | 0    |
| RISC2 | 15.6 | 8        | 20.7  | 30      | 333  | 16.3 | 19     | 21.3    | 11    | 5    | 209  | 25    | OC       | OC      | ос   |

•Capo placements routable, have the best wirelength in all but one benchmark

### Sample Placements





-200000

-300000

-400000

-500000 -1e+06



-200000

200000

400000

600000

-600000

-800000

-400000

### Results on Popular IBM-MS BM's

|                      | SEUltra | SEUltra  | Capo+    | Capo+     |       | Feng-<br>Shui | Capo v9.0 | Capo v9.0 |
|----------------------|---------|----------|----------|-----------|-------|---------------|-----------|-----------|
| Benchmark Suite      | v5.1.67 | v5.4.126 | Parquet+ | Kraftwerk | mPG   | v2.6          | -feedback | -feedback |
|                      | (2002)  | (2004)   | Саро     | ECO       |       | 6/17/04       |           | best-of-2 |
| IBM-MS<br>(ISPD 02)  | 92.8%   | 12.2%    | 19.8%    | 14.7%     | 14.2% | -7.9%         | 0%        | -2.0%     |
| IBM-MSwPins<br>(new) |         | 15.8%    | 21.7%    | 19.7%     |       | -3.4%         | 0%        | -1.3%     |

•Percentages represent differences in HPWL with respect to Capo v9.0

•Positive percentages indicate larger wirelength than Capo

•Negative percentages mean smaller wirelength == better performance

•Note that FengShui 2.6 placements are packed to an edge of the core

•In practical applications, may need to be spread out for routing

### Capo 9.0 Runtime Breakdown (IBM01 mixed-size w pins, 2.4GHz Pentium4)



Speed: 4.3K cells & macros / minute (near-linear scaling) 6.3K cells / minute (near-linear scaling)

# Summary

### Min-cut floorplacement

- □ unifies partitioning, floorplanning & placement
- A working floorplacer is now available (Capo9.0), competitive in these categories
  - □ Geometric multi-way partitioner
  - □ Fixed-outline floorplanner with interconnect optimization
  - Large-scale standard-cell and mixed-size placer
  - □ Free-shape floorplanner (places & shapes modules)

#### New benchmarks

- IBM 01-18 mixed-size with non-zero pin offsets (and non-square blocks)
- □ Faraday circuits: complete P&R benchmarks w embed. memories
- Curr. work: adapting floorplacement in design flows





| Circuit | Cader<br>Block-F | Cadence SEUltra<br>Block-Place+OPlace | Capo+Parc<br>(1.ow-Tem | Capo+Parquet+Capo [2]<br>(Low-Temp_Annealing) | Capo+K | Capo+Kraftwerk ECO [2]    | ECO [2] | Feng:<br>06 | FengShui v2.6<br>06/17/04 | Ca<br>-fe | Capo v9.0<br>-feedhack     |
|---------|------------------|---------------------------------------|------------------------|-----------------------------------------------|--------|---------------------------|---------|-------------|---------------------------|-----------|----------------------------|
|         | Sun-Blade        | Sun-Blade1000,750MHz<br>I             | Linux/Pe               | Linux/Pentium,2GHz                            | Linux  | Linux/Pentium,2GHz<br>III | 2GHz    | Linux/Per   | Linux/Pentium,2.4GHz<br>V | Linux/Per | Linux/Pentium,2.4GHz<br>VI |
|         | HPWL             | Time                                  | HPWL                   | Time                                          | HPWL   | Time                      | %       | TMdH        | Time                      | HPWL      | Time                       |
|         | (e6)             | (min)                                 | (e6)                   | (min)                                         | (e6)   | (min)                     | Overlap | (e6)        | (min)                     | (e6)      | (min)                      |
| ibm01   | 3.25             | 12                                    | 3.23                   | 18                                            | 2.96   | S                         | 1.22    | 2.56        | 3                         | 2.57      | 4                          |
| ibm02   | 7.17             | 31                                    | 7.91                   | 12                                            | 6.84   | ß                         | 0.25    | 6.05        | 5                         | 5.30      | 8                          |
| ibm03   | 9.06             | 28                                    | 10.08                  | 57                                            | 9.45   | ŝ                         | 0.18    | 8.77        | 9                         | 8.55      | 1                          |
| ibm04   | 10.28            | 31                                    | 11.01                  | 12                                            | 10.09  | 15                        | 0.74    | 8.38        | -                         | 9.38      | 18                         |
| ibm05   | 11.55            | 24                                    | 11.03                  | 5                                             | 11.46  | \$                        | 0       | 9.94        | 8                         | 10.78     | 8                          |
| ibm06   | 8.33             | 32                                    | 8.70                   | 19                                            | 9.22   | 0                         | 0.25    | 6.99        | 6                         | 7.12      | 12                         |
| ibm07   | 13.79            | 41                                    | 14.34                  | 22                                            | 14.34  | 51                        | 0.24    | 11.37       | 12                        | 12.67     | 20                         |
| ibm08   | 17.36            | 50                                    | 17.01                  | 26                                            | 17.63  | ส                         | 1.80    | 13.51       | 15                        | 15.63     | 38                         |
| ibm09   | 16.91            | 56                                    | 19.53                  | 29                                            | 21.04  | 32                        | 0.35    | 14.12       | 4                         | 15.55     | 27                         |
| ibm10   | 43.71            | 86                                    | 53.34                  | 611                                           | 49.52  | 2                         | 4.34    | 41.96       | 22                        | 35.09     | 40                         |
| ibm11   | 24.98            | 7                                     | 25.51                  | 43                                            | 25.48  | 4                         | 0.76    | 21.19       | 2                         | 21.71     | 37                         |
| ibm12   | 46.38            | 87                                    | 54.82                  | 97                                            | 61.48  | 23                        | 0.63    | 40.84       | 22                        | 41.81     | 69                         |
| ibm13   | 33.06            | 16                                    | 34.30                  | 54                                            | 32.37  | R                         | 0.12    | 25.45       | 25                        | 28.00     | 19                         |
| ibm14   | 45.74            | 148                                   | 48.66                  | 145                                           | 47.63  | 117                       | 0.07    | 39.93       | 52                        | 40.87     | 2                          |
| ibm15   | 68.63            | 206                                   | 70.68                  | 208                                           | 62.63  | 124                       | 0.09    | 51.96       | 67                        | 55.09     | 66                         |
| ibm16   | 75.94            | 248                                   | 75.27                  | 154                                           | 78.47  | 166                       | 2.03    | 62.77       | 70                        | 65.89     | 112                        |
| ibm17   | 92.41            | 288                                   | 87.81                  | 204                                           | 85.40  | 132                       | 0.13    | 69.38       | 62                        | 77.99     | 98                         |
| ibm18   | 57.04            | 190                                   | 54.66                  | 115                                           | 57.47  | 162                       | 0.02    | 45.59       | 87                        | 49.22     | 86                         |
| Avg     | 15.83%           |                                       | 21.71%                 |                                               | 19.79% |                           |         | -3.47%      |                           | 0%0       |                            |

# Fixed Outline Floorplanning

Not an area minimization problem

- Rather a constraint satisfaction problem
- "Classical Floorplanning Considered Harmful" [Kahng, ISPD `00]
- Sample tool: *Parquet* [ICCD`01, TVLSI`03]





### Capo 9.0

## Fengshui2.6



### Why Mixed-size Placement is Difficult

- Mixed-size placement is at least as hard as
  - □ Standard cell placement (many small movable modules)
  - Floorplanning (large, bulky modules are difficult to pack, especially on a fixed die!)
- Typical optimization heuristics are move-based
   Each move is "local", i.e., affects few other objects
   However, large modules affect many other modules
   Some moves have ripple-effect on small cells
- Removing overlaps after global placement is not easy, invalidates top-down estimation
   Need correct-by-construction methodologies

## Integrated Partitioning, Floorplanning and Placement

- Traditional design flows apply separate optimizations
   Mostly a scalability concern for old algorithms
- New generation of fast min-cut placers enable an integrated approach
  - □ <u>A min-cut partitioner</u> is part of the placer
  - □ Shifting cut-lines perform <u>floorplanning</u>
  - □ End result: locations of modules (a placement)

## **Classical Floorplanning**

- Seeks non-overlapping locations of hard and soft blocks
- Objectives: minimize area and/or wirelength
- Core area not pre-defined (variable-die layout)
- Floorplan representations:
  - Location-based versus topological
  - □ O-Tree, B\*-Tree, Sequence Pair, TCG, CBL etc
  - We use SP, but our methods are generally applicable
- Simulated Annealing (SA) used for optimization