
Constraint-Driven Floorplan RepairConstraint-Driven Floorplan Repair

Michael D. Moffitt Artificial Intelligence Laboratory (speaker)
Aaron N. Ng Advanced Computer Architecture Laboratory
Igor L. Markov Advanced Computer Architecture Laboratory
Martha E. Pollack Artificial Intelligence Laboratory

Michael D. Moffitt Artificial Intelligence Laboratory (speaker)
Aaron N. Ng Advanced Computer Architecture Laboratory
Igor L. Markov Advanced Computer Architecture Laboratory
Martha E. Pollack Artificial Intelligence Laboratory

University of MichiganUniversity of Michigan
Department of Electrical Engineering
and Computer Science
Department of Electrical Engineering
and Computer Science

Outline of Talk

Legalization: Motivation and Previous Work
Correct-by-construction approaches
Post-placement legalization

The FLOORIST (“Floorplan Assistant”) Algorithm
Step 1: Creation of constraint graphs
Step 2: Conflict-Directed Iterative Repair
Step 3: Translation to Fixed-placement via Emulation

Experimental Setup and Results

Conclusion and Future Work

“Hard macros will revolutionize SoC design”
Enno Wein & Jacques Benkoski, EEDesign, Aug 20, 2004

Growth in the number of hard macros in SoC designs Hard macros vs. standard cell area

Hundreds of predesigned macros
Embedded memories, analog circuitry, IP blocks

Macro placement is usually separate from
standard cell placement (done once & never repeated)

Why floorplanning?

Why floorplan legalization?

Reason #1: Existing packages fail to produce legal
floorplans

Reason #2: Legal floorplans susceptible to change
Resizing of blocks
Dynamically acquired design constraints
Minor adjustments from chip architect

Solutions to
IBM-HB 09:

Feng Shui 5.1
[Khatkhate et al., 2004]

APlace 2.0
[Kahng et al., 2005]

Capo 9.4
[Roy et al., 2005]

Correct-by-Construction Approaches

Guarantee (or at least attempt) legalization at each step
in search

mPG [Chang et al., 2003]
Enforces legalization at every level of a cluster hierarchy

Capo 9 [Adya et al. 2004, Roy et al., 2006]
Performs legalization of subproblems resulting from min-
cut placement
Legalization failures propagate upwards

PolarBear [Cong et al., 2005]
“Pre-legalization”: all subproblems are ensured to be legal
Uses a simple row-based block packing scheme

Legalization by Post-processing

Feng Shui [Khatkhate et al., 2004] and APlace [Kahng et al., 2004]
Postpone legalization until global solution obtained
Use greedy Tetris-like algorithm [Hill, 2002] to pack cells

Other works in cell-placement
Network flows formulation [Brenner et al., 2004]
Diffusion-based approach [Ren et al., 2005]
Do not generally extend to macros

Limited work in floorplanning using sequence pairs [Nag et
al, 1999] and traditional constraint-graphs [Cong et al., 2006]

Remove all overlaps initially
Iteratively “squeeze” floorplan into enclosing space
Do not encode violations or extend to other constraints

FLOORIST (“Floorplan Assistant”)

Begins with a coarse, global floorplan
May have been produced by a chip architect
May have been produced by a global floorplanner

Constructs a pair of constraint graphs, except…
Violated non-overlap constraints are explicitly encoded
Does not correspond to a feasible layout

Performs a greedy, conflict-directed iterative repair
Uses constraint graphs to determine possible pairwise
relationships between overlapping modules
Extracts explanations for overlaps, removing culprits

Translates layout back to fixed-placement floorplan
Attempts to emulate initial layout as closely as possible

FLOORIST (“Floorplan Assistant”)

Step 1: Translation to
Constraint Graphs

Step 2: Conflict-Directed
Iterative Repair

Step 3: Translation to
Fixed-Placement

while (illegal)

Step 1: Translate to Constraint Graphs

[Liao and Wong, 1983] Horizontal and vertical constraint graphs (GH and
GV) containing:

A node i for each module Mi

An directed, weighted edge Ei,j between pairs of nodes (direction
depending on the pairwise relationship of modules Mi and Mj)

Over past decade, phased out in favor of:
Sequence pairs [Murata, 1995]
O-Trees [Pang et al., 2000]
Many others; see [Yao et al., 2003]

Some advantages of the graph representation:
Recently shown to be extremely efficient for (optimal) area-
minimization [Moffitt & Pollack, ICAPS 2006]
Can express a wide variety of constraint types [Young et al., 2002]
(With some work) it can encode an infeasible layout

Step 1: Translate to Constraint Graphs
Relational view:

L(1, 2) … “1 to the left of 2”
A(3, 6) … “3 is above 6”

Blocks that overlap?
E(4, 5) … empty relationship
E(2, 3) … empty relationship

1

4

2

3

5
6 7

GH 1 2 3

4 5 6 7

GV

no edge

Step 2: Conflict-Directed Iterative Repair

First Phase: Remove “trivial” overlaps

Can be resolved by sliding
Block 3 to the right!

1

4

2

3

5
6 7

GH

For every E(i,j) є S
If (exists P(i,j) such that consistent(S U {P(i,j)}))

S = S U {P(i,j)} – {E(i,j)}

Doesn’t work for E(4,5)

Step 2: Conflict-Directed Iterative Repair

Second Phase: Identify culprits and perform “safe” swaps

1

4

2

3

5
6 7

GH

1 2 3

4 5 6 7

GV
Identity blocks on critical paths
Check if slack available in alternate graph
If so, swap edge
Repeat first phase

Step 3: Translation to Fixed-Placement

Goal: Emulate the initial placement as closely as possible

Solution: For each module (in descending order of size),

Can it be given its original horizontal coordinate?
If so, add additional edges to enforce this
If not, slide it as far left / right as slack allows

Can it be given its original vertical coordinate?
If so, add additional edges to enforce this
If not, slide it as far up / down as slack allows

Propagate these adjustments through graphs

Repairing Other Constraint Types

Non-overlap constraints are just one type of violation

The violation of any “edge-based constraint” can be
repaired in the same manner!

Initial Placement Module Movement Final Placement

Experimental Setup

IBM-HB Benchmarks [Cong et al., 2004]
18 instances, between 550 and 1650 macros
No cells (pure floorplanning instances)

Three global floorplanners
Capo 9.4 [Roy et al., 2005] (Note: recent Capo 10 is better)
Feng Shui 5.1 [Khatkhate et al., 2004] (only global placer)
APlace 2.01 [Kahng et al., 2005]

Three legalization tools
Feng Shui 5.1’s legalizer [Khatkhate et al., 2004]
Parquet 4.5 [Adya and Markov, 2003]
FLOORIST (our work)

Measure % overlap, HPWL, legalization time

Experimental Results (Capo 9.4 layouts)

Very minor violations All layouts legal
Negligible wirelength increase

Extremely fast

Experimental Results: Legalization Success
C

ap
o

9.
4

FS
 5

.1
 (g

lo
b)

A
P

la
ce

2.
0

FS 5.1 (legalizer) Parquet 4.5 FLOORIST

100%

100%

100%100%

79%

21%

56%

44%

Legalizes

Fails to Legalize

Seg. Faults

83%

17%

43%

57%

71%

29%

Experimental Results: Wirelength & Runtime

0
20
40
60
80

100
120
140
160
180
200

Capo's FS's Aplace's

Parquet
Floorist

%
 In

cr
ea

se
 in

 H
P

W
L

… initial solutions

0

10

20

30

40

50

60

Capo's FS's Aplace's

Parquet
Floorist

R
un

tim
e

(s
ec

on
ds

)

… initial solutions

Experimental Results (Pictures)
Initial Solution FS 5.1’s legalizer Parquet 4.5 FLOORIST

C
ap

o
9.

4’
s

 H
B

-1
8

FS
 5

.1
’s

 H
B

-0
9

A
P

la
ce

’s
H

B
-0

7

Ongoing Work

Heuristics for choosing swaps made during repair phase
Currently guided by amount of available slack
Could potentially identity most “common” culprits

Replace emulation phase with explicit optimization
Employ an LP-formulation to minimize wirelength

Create a tighter coupling between FLOORIST and global
floorplanning system

Use as subroutine within placement algorithm
Communicate hierarchical cuts to improve speed of graph
operations

Conclusion

FLOORIST: a tool for legalizing layouts when
Global floorplanner fails to legalize
Layout undergoes dynamic changes
Chip architect sketches rough floorplans manually

Performs iterative repair by:
Identifying conflicts responsible for violated constraints
Invoking gradual changes that preserve initial quality

By postprocessing APlace layouts, generates floorplans
7% better in wirelength than best known solutions

