GTX: The MARCO GSRC Technology Extrapolation System

A. Caldwell, Y. Cao, A. B. Kahng, F. Koushanfar,
H. Lu, I. Markov, M. Oliver,
D. Stroobandt and D. Sylvester

http://vlsicad.cs.ucla.edu/GSRC/GTX/

Supported by Cadence, Synopsys and the MARCO Gigascale Silicon Research Center

Outline

- Introduction
- Previous efforts
- Goals for an “ideal” system
- GTX structure
- Fundamental features of GTX
- Example studies
 - Sensitivity analyses of cycle-time models
 - Evaluating new device models
 - Delay uncertainty study
Introduction: Technology Extrapolation

- Evaluates impact of
 - design technology
 - process technology
- Evaluates impact on
 - achievable design
 - associated design problems
- Questions to be addressed
 - Sets new requirements for CAD tools and methodologies
 - Roadmaps: familiar and influential example

What is the most power-efficient noise management strategy?

How and when do L, SOI, SER, etc. matter?

Will layout tools need to perform process simulation to efficiently model cross-die and cross-wafer manufacturing variation?

Sample Study 1: Optimization

- Most commonly cited optimal buffer sizing expression (Bakoglu)
- New study:
 - Sweep repeater size for single stage in the chain
 - Examine both delay and energy-delay product

[Graph showing Critical Path Delay vs. Repeater Size, with normalized energy-delay product as well.]
Sample Study 2: New Models

- Five different interconnect models
 - Bakoglu’s model (RC)
 - [Alpert, Devgan and Kashyap, ISPD 2000] (RC)
 - [Ismail, Friedman and Neves, TCAD 19(1), 2000] (RLC)
 - [Kahng and Muddu, TCAD 1997] (RLC)
 - Extension of [Alpert, Devgan and Kashyap, ISPD 2000] (RLC)

![Graph showing Wire Delay vs Wire Length and Wire Width](image)

What Do We Need?

- Reuse of existing models, effort
- Framework for adding new models to encompass new aspects of technology, new axes of achievable design
- Ability to evaluate models (sanity, consistency checks)
- Easy model substitution to compare between models
- Sweeping ability to assess the impact of modeling choices
- Constraints to allow elimination of infeasible solutions
What is Available?

- Previous and ongoing efforts
 - ITRS Roadmaps
 - Tools: SUSPENS, GENESYS, RIPE, BACPAC, ...
 - Numerous tools in industry

- Observations
 - Predict “same” parameters but different assumptions, inputs
 - Lack of documentation and visibility of internal calculations
 - Single inference chain for a given output (hard-coded)
 - Inflexible: user cannot define studies of related parameters
 - Near-total duplication of effort
 - Missing: models of CAD tools and optimizations (what is really “achievable”?)
 - Missing: scope, comprehensive coverage

Goals of A New Technology Extrapolation System

- Flexibility
 - Edit or define new parameters and relations between them
 - Perform specific studies (but different studies at different times)

- Quality
 - Continuous improvements
 - World-wide participation of experts

- Transparency
 - Open-source mechanism
 - Models are visible to the user

- Prevention of redundant effort
 - Permanent repository of first choice
 - Adoptability and maintainability
GTX: GSRC Technology Extrapolation System

- GTX is set up as a framework for technology extrapolation
- Openness in grammar, parameters and rules
 - Easy sharing of data in research environment
 - Contributions from other groups

Knowledge Representation

- Human-readable ASCII grammar

```plaintext
#parameter dl_chip
#type double
#units [m]
#default 1e-2
#description chip side length
#reference
#endparameter

#rule BACPAC_dl_chip
#description
#output
double [m] dl_chip;
#inputs
double [m^2] dA_chip;
#body sqrt(dA_chip)
#reference
#endrule
```
Knowledge Representation

- **Human-readable ASCII grammar**
- **Benefits:**
 - Easy creation/sharing of parameters/rules by multiple users
 - D. Sylvester and Y. Cao: device and power, SOI modules that “drop in” to GTX
 - P.K. Nag: Yield modeling
 - Extensible to models of arbitrary complexity (specialized prediction methods, technology data sets, optimization engines)
 - Avant! Apollo or Cadence SE P&R tool: just another wirelength estimator
 - Applies to any domain of work in semiconductors, VLSI CAD
 - Transistor sizing, single wire optimizations, system-level wiring predictions,…

Parameters

- **Description of technology, circuit and design attributes**
- **Importance of consistent naming cannot be overstated**
 - **Naming conventions for parameters**

 \[
 \text{[preposition]} _ \text{<principal>} _ {\{<qualifier> _ <place> _ <qualifier> _ <adverbial> _ <index> _ <unit>\}}
 \]

 - **Example:** `r_int_tot_lyr_pu_dl`
 - **Requirements:**
 - Relatively easy to understand parameter from its name
 - Distinguishable (no two parameters should have the same name)
 - `r_int` (interconnect resistance) = `r_int` (interconnect resistivity) ?
 - Unique (no two names for the same parameter)
 - `R_int` = `R_wire` ?
 - Sortable (important literals come first)
 - **Software to automatically check parameter naming**
Rules

- Methods to derive unknown from known parameters
- ASCII rules
 - Laws of physics, models of electrical behavior, statistical models
 - Include closed-form expressions, vector operations, tables
 - Storing of calibration data (e.g., “technology files”) for known process and design points in lookup tables
 - Constraints, used to limit range during “sweeping”
- “External executable” rules
 - Assume a callable executable (e.g., PERL script)
 - Use command-line interface and transfer through files
 - Allow complex semantics of a rule
- “Code” rules
 - Implemented in C++ and linked into the inference engine

Rule Chains

- “Rule chains” guide inference
 - Acyclic set of rules
 - Interactive specification and comparison of alternative modeling choices
- Studies
 - Input values + rules that make a rule chain
 - User-controlled and savable
 - “Sweeping” of a rule chain
 - Evaluation of all combinations of multi-valued inputs
 - Example: clock frequency for different Rent exponents and varying logic depth
GTX Engine

- Contains no domain-specific knowledge
- Evaluates rules in topological order
- Performs studies
- Multiple values through “sweeping”
- Runs on three platforms (Solaris, Windows and Linux)

URL: http://vlsicad.cs.ucla.edu/GSRC/GTX/

Graphical User Interface (GUI)

- Provides user interaction
- Visualization (plotting, printing, saving to file)

4 views:
 - Parameters
 - Rules
 - Rule chain
 - Values in chain
GTX Current Status

- Models implemented
 - Cycle-time models of SUSPENS (with extension by Takahashi), BACPAC (Sylvester, Berkeley), Fisher (ITRS)
 - Currently adding
 - GENESYS (with help from Georgia Inst. Tech.)
 - RIPE (with help from Rensselaer Univ.)
 - New device and power modules (Synopsys / Berkeley)
 - New SOI device model (Synopsys / Berkeley)
 - Inductance models (Silicon Graphics / Berkeley / Synopsys)
 - Yield model (CMU)

- Studies performed in GTX
 - Model analysis
 - Study of the impact of parameters
 - Design optimization studies

Outline

- Introduction
- Previous efforts
- Goals for an “ideal” system
- GTX structure
- Fundamental features
- Example studies
 - Sensitivity analyses of cycle-time models
 - Evaluating new device models
 - Delay uncertainty study
Sensitivity Analysis of Cycle-time Models: Parameter Sensitivity

- Change parameter values and observe resulting difference in outputs

Sensitivity Analysis of Cycle-time Models: Model Sensitivity

- Replace rule in a model's rule chain by another model's rule and observe the difference in outputs
New device models for bulk Si and Silicon-on-Insulator (SOI) devices
- Provided by D. Sylvester (Synopsys) and Y. Cao (UCB)
- SOI model assumes partially-depleted SOI (PD-SOI) technology and is based on popular BSIM3SOI models
- Both modules compared to BSIM3 HSPICE runs; results match within 10%

General study
- Floating body effect: changes in V_{th} and I_{dsat}
 - Calculate range of possible I_{dsat} values
 - Model ignores the impact of capacitive coupling on body voltage
- Dynamic delay (due to coupling capacitances between same-layer interconnects)

Influence of device technology on clock frequency and power
- Best case: largest I_{dsat} (realizable due to floating body effect, only for SOI) and no effective coupling capacitance: f from 1.03 GHz (bulk) to 1.31 GHz (SOI)
- Worst case: smallest I_{dsat} and switching factor of 2: 867 MHz and 1.05 GHz

Power results

<table>
<thead>
<tr>
<th></th>
<th>Bulk Si</th>
<th>SOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Logic + local wires</td>
<td>26.20 W</td>
<td>28.99 W</td>
</tr>
<tr>
<td>%</td>
<td>46.18%</td>
<td>43.91%</td>
</tr>
<tr>
<td>Global interconnects</td>
<td>2.20 W</td>
<td>2.60 W</td>
</tr>
<tr>
<td>%</td>
<td>3.88%</td>
<td>3.93%</td>
</tr>
<tr>
<td>I/O drivers + pads</td>
<td>11.7 W</td>
<td>13.35 W</td>
</tr>
<tr>
<td>%</td>
<td>20.65%</td>
<td>20.22%</td>
</tr>
<tr>
<td>Clock distribution</td>
<td>7.93 W</td>
<td>9.65 W</td>
</tr>
<tr>
<td>%</td>
<td>13.98%</td>
<td>14.62%</td>
</tr>
<tr>
<td>Memory</td>
<td>0.94 W</td>
<td>0.86 W</td>
</tr>
<tr>
<td>%</td>
<td>1.66%</td>
<td>1.31%</td>
</tr>
<tr>
<td>Short circuit</td>
<td>7.68 W</td>
<td>10.21 W</td>
</tr>
<tr>
<td>%</td>
<td>13.54%</td>
<td>15.47%</td>
</tr>
<tr>
<td>Leakage</td>
<td>0.07 W</td>
<td>0.38 W</td>
</tr>
<tr>
<td>%</td>
<td>0.12%</td>
<td>0.54%</td>
</tr>
<tr>
<td>Total power</td>
<td>56.74 W</td>
<td>66.03 W</td>
</tr>
<tr>
<td>%</td>
<td>100.00%</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

- SOI: 16% increase in power versus Bulk but 24% increase in frequency
Bulk Si Versus SOI Device Models (Cont.)

- Parameter sensitivity of both models
 - Several technology related parameters are varied by +/- 10%
 - SOI slightly less sensitive to input parameter changes
 - Process spread (between best-case and worst-case) larger for SOI

Delay Uncertainty Study

- Staggered repeaters
 - First introduced in [Kahng et al, VLSI Design 99] to reduce delay and noise
Conclusion

- GTX: a new framework for technology extrapolation
- Flexible and extensible
- Enables easy reuse of models
- Provides a common parameter base between all models
- Provides user interaction
- Relies on open-source and contributions by expert users
- “Living Roadmap”
- Technology extrapolation becomes easier
- More principled understanding of requirements for CAD tools

GTX Project Information

- Design: A. Caldwell, A. B. Kahng, I. Markov, M. Oliver and D. Stroobandt
- Implementation: M. Oliver
- Knowledge gathering and study implementation: A. B. Kahng, F. Koushanfar, H. Lu and D. Stroobandt
- Model extensions and new studies: Y. Cao, X. Huang, S. Muddu, P.K. Nag and D. Sylvester
- To contact the developers, ask questions, send comments, or to contribute models to GTX, please send E-mail to GTX@cs.ucla.edu