
Advanced Computer Architecture Laboratory

Synthesis and Gate-Level Simulation
of Quantum Circuits

University of Michigan

Igor Markov

Advanced Computer Architecture Laboratory

Recent News and Quotes

• Up-coming DARPA BAA on quantum computing
– $$ to work on more detailed proposals
– Factor 128-bit numbers in 30 sec each
– No constraints on algorithms or physical space used
– Loose constraints on resources and development time

• Isaac Chuang (January):
– “Ion traps are only 10x away from being scalable”

(in terms of error threshold)

Advanced Computer Architecture Laboratory

Outline
• Q. Circuit Design Automation at Michigan
• Tasks in Design Automation
• Our work on simulation

– Back-end: data structures and algorithms
– Compiler front-end and the QuIDDPro distribution
– A non-quantum application

• Automatic synthesis of quantum circuits
– Problem formulations & relevant work by others
– Our results

• Physical synthesis and parallels with VLSI design
• Conclusions

Advanced Computer Architecture Laboratory

Q.Circuit Design Automation at Michigan

• Faculty: John Hayes & Igor Markov
• Students: George Viamontes, Smita Krishnaswamy

and Vivek Shende
• Former postdoc: Ketan Patel
• Ongoing collaboration: with Stephen Bullock (NIST)
• Our background: computer architecture and

algorithms for Electronic Design Automation
– We have contributed to commercial CAD tools

for classical circuit synthesis, layout and testing
– Our students understand quantum circuits,

algorithms, and can develop software

Advanced Computer Architecture Laboratory

Tasks in Electronic Design Automation

• In non-quantum circuit design
– Electrical, thermal and mechanical simulation (1960s +)
– Logic simulation and test (1970s +)
– Layout: routing (1960s +) and placement (1970s +)
– Logic synthesis and technology mapping (1980s +)
– Formal verification & physical verification (1990s +)

• For quantum circuits, same tasks make sense
– Complexity is much higher
– Fewer people have the right intuition
– Building meaningful, working quantum circuits will

likely require extraordinary design automation

Advanced Computer Architecture Laboratory

Handling Circuit Complexity
• Abstraction as an engineering approach

(ignore inessential details, focus on 1st-order effects)
– Example: ASIC layout & simulation with standard cells
– Requires a bottom-up effort: standard-cell libraries
– Abstraction often fails, requires refinement

• Separation of concerns (design flows & tool-chains)
– Essentially, a divide-and-conquer approach
– Example: logic design ignored layout issues in the past
– Such separation often fails, requires merging,

e.g., physical synthesis
• High-performance computing

Advanced Computer Architecture Laboratory

Q. Circuit Simulation and Synthesis
• (Quantum Logic) Simulation: for a given circuit

and a given input, find the output
– Randomized simulation
– Estimating the probabilities of outcomes

• Synthesis: input a 2nx2n matrix (explicitly or not)
and find out an n-qubit circuit that implements it
– Up to phase or up to a given measurement
– Up to allowed errors

• More generic quantum-mechanical simulations
• Aaronson: new link between simulation & synthesis

– Uses techniques from reversible circuits for q.simul.

Advanced Computer Architecture Laboratory

Simulation with Data Compression
• Quantum Information Decision Diagram (QuIDD)

– Data structure that can asymptotically compress the
matrices and vectors used in quantum-mechanical apps

– Algorithms for matrix-mult., tensor product, measurement,
etc. manipulate the compressed QuIDD directly

• QuIDDPro Simulator
– Implementation of the QuIDD data structure in C++
– Facilitates high-performance simulation of density

matrices, errors, state vectors, communication, etc.
– Surprising empirical results on Grover’s algorithm

Advanced Computer Architecture Laboratory

Redundancy in Quantum Mechanics

2/12/12/12/1
2/12/12/12/1
2/12/12/12/1

2/12/12/12/1

2/12/1
2/12/1

2/12/1
2/12/1

−−
−−
−−

=

−
⊗

−

Advanced Computer Architecture Laboratory

QuIDD Vector Example

f

0R

1R

1 0


















1
0
0
0

=
00

01

10

11

Terminal value array

0 + 0i
1 + 0i

0

1

= 11

Advanced Computer Architecture Laboratory

QuIDD Matrix Example 2x2

1/ 2−

1/ 2

= 








− 2/12/1
2/12/10

1

10

1

f

0R

0C

0

1

0 1-Qubit Hadamard
Operator

QuIDDQuIDD Matrix Example 4x4Matrix Example 4x4

i02/1 +

i02/1 +−

=


















−−
−−
−−

2/12/12/12/1
2/12/12/12/1
2/12/12/12/1

2/12/12/12/100

01

10

11

1001 1100

1

f

0R

0C

1R

1C

1R

1C

0
1

0

QuIDDQuIDD Matrix Example 4x4Matrix Example 4x4

i02/1 +

i02/1 +−

=


















−−
−−
−−

2/12/12/12/1
2/12/12/12/1
2/12/12/12/1

2/12/12/12/100

01

10

11

1001 1100

1

f

0R

0C

1R

1C

1R

1C

0
1

0

Advanced Computer Architecture Laboratory

QuIDD Operations

• Operations are performed on compressed matrices and
vectors w/o decompressing them

• Graph traversal algorithms based on Apply
– Inner/outer product, scalar operations
– Tensor product, matrix multiplication, matrix addition
– Measurement, partial trace, etc

• Runtime and memory usage of all operations
depend on the size of QuIDD operands (i.e. # of nodes)
– Polynomial-sized QuIDDs lead to polynomial runtime

and memory in simulations

Advanced Computer Architecture Laboratory

Useful Polynomial-Sized QuIDDs

• Arbitrary superpositions of several basis states (linear in n)
• Equal superpositions of all basis states except for several
• n-qubit Pauli operators
• n-qubit Hadamard operators
• Conditional phase-shift operator
• Oracle originally considered by Grover
• And others

• QuIDDs for QFT exhibit exponential scaling
with current data structures

QuIDDPQuIDDProro Simulation Simulation of of GroverGrover’s Algorithm’s Algorithm

Same results for any oracle that distinguishes a unique element

Same results for any oracle that distinguishes a unique element

O(p(n)(√2)n)

O(n)

QuIDDPQuIDDProro Simulation Simulation of of GroverGrover’s Algorithm’s Algorithm

Advanced Computer Architecture Laboratory

Density-Matrix Simulations
• Even for pure (noiseless) states, density matrices

lead to a huge increase in memory usage
– Take a 16-qubit state
– State-vector representation: 216 complex amplitudes,

16 bytes per amplitude (two doubles) → 1GB RAM
– Density-matrix representation: 232 complex amplitudes

→ 64TB RAM
• Sample QuIDDPro/D simulation

– 16-qubit reversible full adder (w Toffoli gates), 24 gates
– runtime: 0.44 sec, peak memory: 62.5 KB

• More empirical data in quant-ph/0403114

Cannot use
Gottesman-Knill

Advanced Computer Architecture Laboratory

QuIDDPro Simulator
• Front-end ASCII interface: interactive & batch modes
• Input language similar to Matlab

– Built-in support for popular gates and operations
– Key control constructs such as looping and conditional execution

• Support for state-vector simulations and density-matrices
• Implementation details: C++, CUDD, GMP, flex, bison
• Future extensions to the input language

– User-defined functions
– Technology-specific operators
– Dirac notation?

• Development of new data structures
• User’s guide

Advanced Computer Architecture Laboratory

Recent References

* G. F. Viamontes, I. L. Markov and J. P. Hayes,
``Improving Gate-Level Simulation of Quantum
Circuits,’’ quant-ph/0309060,
to appear in Quantum Information Processing
(shorter version in Proc. Design Automation & Test
in Europe, Paris, France, February 2004)

* G. F. Viamontes, I. L. Markov and J. P. Hayes,
``Graph-based Simulation of Quantum Computation in
the State-vector and Density-matrix Representation,''
quant-ph/0403114 to appear in Proc. SPIE Conf. on
Quantum Information and Computation, Orlando,
Florida, April 2004.

Advanced Computer Architecture Laboratory

A Non-Quantum Application:
Modeling Soft Errors in VLSI Circuits

• Transient faults
– Mostly caused by neutron hits
– Neutrons generated by cosmic particles in atmosphere
– Became noticeable as transistors became smaller

• Incidence varies significantly with altitude
• Much more pronounced in aerospace applications

– Especially during solar flares
• Folklore:

– Sun Micro didn’t turn on ECC on L2 cache by mistake
– Lost customers

Advanced Computer Architecture Laboratory

Advanced Computer Architecture Laboratory

Advanced Computer Architecture Laboratory

Advanced Computer Architecture Laboratory

Advanced Computer Architecture Laboratory

Simulating Transient Faults

• Fault models used in CAD tools today
are geared towards manufacturing defects
– Need inherently probabilistic fault models

• Example: probabilistic AND gate

• Faultiness of a circuit depends on circuit structure
and gate fault models
– Wire faults can be modeled by fake faulty buffers

0
0

0 with probability 1-p
1 with probability p

Advanced Computer Architecture Laboratory

Probabilistic Transfer Matrix (PTM)

• Row indices represent outputs values
• Column indices represent inputs values
• Matrix elements capture pairwise transition

probabilities









−

−−−
p1

p
p

p1
p

p1
p

p1

inputs

output

00 01 10 11

0

1

Prob[output=1]
when input is 10

Advanced Computer Architecture Laboratory

Estimating Reliability Based on PTM

• PTM for a circuit can be computed
from PTM of its gates
– three basic methods of gate composition:

serial, parallel and fanout

∑ ∑
=

⋅=
i ijj:C

iji Pp
0),(

],[

ideal transfer matrix
(I.e., no errors)

circuit input probabilities

(j,i)-th entry of
probabilistic
transfer matrix

circuit error
probability

Advanced Computer Architecture Laboratory

Computing Circuit PTMs

• Similar to simulating quantum circuits

A⊗B

A

B

Parallel Connection

A B

Serial Connection

B•A

Advanced Computer Architecture Laboratory

• Seems harder than simulating quantum circuits

• This is easy with QuIDDs

B’ is the PTM of B with
columns corresponding to
invalid inputs removed

A B

B’•A

Fanout

Computing Circuit PTMs

Advanced Computer Architecture Laboratory

Reference

* K.N.Patel, I.L.Markov and J.P.Hayes, “Evaluating
Circuit Reliability Under Probabilistic Gate-Level Fault
Models ,” Intl. Workshop on Logic and Synthesis, 2003

Advanced Computer Architecture Laboratory

Quantum Logic Synthesis

• Assume a gate library (CNOTs, one-qubit ops)
• Input a 2n×2n matrix U and find an n-qubit circuit

– Typically U is implemented up to phase
– We show how to implement up to a given measurement

• Difficult problem even for small n,
even when U is given explicitly (matrix elements)

• Otherwise U may be given by a circuit
which should be simplified
– We can extract sub-circuits and simplify them

Advanced Computer Architecture Laboratory

Recent Results in Synthesis (1)
• 2-qubit case: motivated by existing physical

implementations, peephole optimization,
quantum communication

• Two 2-qubit operators U, V are equivalent up to local
unitaries iff χ(UεUtε) = χ(±VεVtε) where χ denotes
the characteristic polynomial and ε = σy ⊗ σy

• Related techniques allow finding one-qubit operators
and simplify the synthesis problem by normalization

Advanced Computer Architecture Laboratory

Recent Results in Synthesis (2)
• If CNOT is the only multi-qubit gate in library,

then 3 CNOTs are required for most 2-qubit ops
– 3 CNOTs are also sufficient
– Additionally, at least 6 basic gates are required (6+3)
– 7 additional basic gates are sufficient (7+3)
– 15 additional one-parameter gates necessary & sufficient

• B gate from Berkeley
– A replacement for CNOT
– Two B gates are sufficient for any 2-qubit operator

(no asymptotic improvement though)

Advanced Computer Architecture Laboratory

Recent Results in Synthesis (3)

• Some n-qubit ops require (4n – 3n – 1)/4 CNOTs
– For n = 2, this yields 3
– Reference: quant-ph/0308033v2

• This lower bound was matched asymptotically
by Vartiainen et al with a synthesis algorithm
– Remaining gap is ~70x

• Note that this applies to worst-case optimality
• In particular, for diagonal operators
Θ(2n) gates are necessary and sufficient
– Reference: quant-ph/0303039

Advanced Computer Architecture Laboratory

2-Qubit Universal Circuits
• The following circuits can implement an arbitrary 2-qubit op;

They use 15 elementary gates and 3 CNOT gates

Advanced Computer Architecture Laboratory

CNOT Counting

• For U ∈ SU(4) an arbitrary 2-qubit operator,
we found closed-form tests for the number
of required CNOT gates

• Then U can be implemented with
– 0 CNOT gates iff χ(UεUtε) = (x±1)4

– 1 CNOT gate iff χ(UεUtε) = (x+i)2(x-i)2

– 2 CNOT gates iff tr(UεUtε) is real
(ε =σy⊗σy, χ is the characteristic polynomial)

• Reference: quant-ph/0308045v3

Advanced Computer Architecture Laboratory

Technology-mapping for CNOT gates

• Given a 2-qubit Hamiltonian H,
find τ such that exp(iτH) is equivalent to CNOT
up to one-qubit operators

• Set χ(eiHτε(eiHτ)tε) = (x+i)2(x-i)2

– Numerically solve for τ
– Solutions may or may not exist for specific H

• This may help implementing CNOT
for new technologies

• Open question: is there an analytical solution?

Advanced Computer Architecture Laboratory

Synthesis with Measurement
• Quantum computations are typically followed

by a known measurement
– Some information is erased
→ Additional flexibility during logic synthesis

• We propose a new synthesis problem
– Fix a projective measurement (space decomposition)

to be performed at the end of computation
– Consider two operators equivalent iff

for all inputs, probabilities of outcomes are the same

Advanced Computer Architecture Laboratory

Synthesis with Measurement
• Suppose all subspaces are spanned by

computational basis vectors
• Then at most two CNOTs are required

to implement an arbitrary 2-qubit operator
• 2 CNOTs are necessary and sufficient if

– No subspace is 3-dim and the subspaces
are not span(|0〉,|3〉) or span(|1〉,|2〉)

• 1 CNOT is necessary and sufficient
if one of the subspaces is 3-dimensional

• Reference: quant-ph/0401162

Advanced Computer Architecture Laboratory

Recent References

[1] S. S. Bullock and I. L. Markov: “An Arbitrary Two-Qubit
Computation in 23 Elementary Gates,” PRA 68 012318
(also in Proc. ACM/IEE Design Automation Conference 2003)

[2] S. S. Bullock and I. L. Markov: “Asymptotically Optimal Circuits
for Diagonal Computations”, quant-ph/0303039 Quantum
Information and Computation, vol. 4, no. 1, January 2004, pp. 27-47

[3] V. Shende, I. L. Markov and S. S. Bullock: “Minimal Universal
Two-qubit Quantum Circuits,” quant-ph/0308033v2, to appear in
PRA (also in Proc. ACM/IEEE Design Automation and Test in
Europe 2004)

[4] V. Shende, S. S. Bullock and I. L. Markov: “Recognizing Small-
Circuit Structure in Two-Qubit Operators, ” quant-ph/0308045v3

[5] V. Shende and I. L. Markov, “Measurement Saves CNOT Gates in
Optimal 2-Qubit Circuits”, quant-ph/0401162

Advanced Computer Architecture Laboratory

None of Those Results
Account for Layout!

• Layout is technology-dependent
(synthesis is just a cosy abstraction)

• Layout tends to limit scalability
– Interactions often limited to nearest neighbors
– Related considerations in VLSI w.r.t. buffer insertion

• Earlier, synthesis of non-quantum VLSI circuits
has been performed w/o accounting for layout
– Circuit delay was measured in #gates on critical paths,

assuming zero delay in wires
– However, due to the scaling of Rs and Cs

wires now account for >80% of circuit delay

Advanced Computer Architecture Laboratory

Total Dynamic Power Breakdown
(Intel Centrino)

Global clock included

Interconnect
51%

Gate
34%

Diffusion
15%

Source: Intel, Feb 2004

Advanced Computer Architecture Laboratory

Physical Synthesis in VLSI
• To synthesize commercially-feasible VLSI logic,

one must compute circuit delays correctly
– Wire delays depend on distances between gates
– To find gate locations, one must perform placement
– … but placement is performed after synthesis!

• Synthesis and placement must be simultaneous!
– Such CAD tools appeared in the last 3 years
– Mostly based on independently developed

synthesis and placement programs

Advanced Computer Architecture Laboratory

Why Physical Synthesis is Difficult

• Classical synthesis can be performed w/o
technology details, to some extent
– “Technology mapping” is the interface to real world

• Accounting for layout in synthesis
requires a lot more technology information
– This breaks abstraction
– However, existing algorithms can be exteneded

(finding good placements is still a part of the problem)
• Quantum Physical Synthesis is justified

– Layout is more critical for quantum circuits
– More difficult too

Advanced Computer Architecture Laboratory

Toward Quantum Physical Synthesis(1)

• Where reasonable, follow VLSI design principles
• For a given technology, regularize layout (λ-grid)
• Try to describe all geometry with rectangles

– May require moving parts, paths of motion

• Define design rules: minimum spacing, etc
– Dynamic constraints?

• Define standard cells: hide difficult physical effects
– This is very likely to cost performance!

Advanced Computer Architecture Laboratory

Toward Quantum Physical Synthesis(2)

• Formally map qubits into geometry
(grid-aligned rectangles)

• Formulate placement and routing
– Study complexity (classical VLSI layout is

harder than number-factoring, but that’s okay)
– Come up with algorithms for irregular quantum

circuits (those may include QECCs)
• Define new objective functions for synthesis

Advanced Computer Architecture Laboratory

Conclusions

• Working with non-trivial quantum circuits
will soon require circuit design automation
– Decent progress in simulation

(in the worst case, use parallel computers)
– Decent progress in automatic synthesis
– Layout problems are not even formalized yet

• Layout promises to be a major obstacle
to the scalability of quantum circuits
– Some experience from VLSI design may apply
– Need work on quantum circuit layout

