
Node Mergers in the
Presence of Don’t Cares

Stephen M. Plaza, Kai-hui Chang,
Igor L. Markov, and Valeria Bertacco

Univ. of Michigan, EECS

2/27

Wire delays dominate critical paths
(130nm,90,65,…)
Tech. mapping, place-and-route
are key to delay estimation

Dynamic power, leakage

Motivation & Context

Technology (nm)

ITRS 2005 – Delay Trends

Relatively small gate delay

R
el

at
iv

e
D

el
ay

250 180 130 90 65 45 32

0.1

1

10

100 Gate Delay (fanout of 4)

Local (scaled)

Global with Repeaters

Global w/o Repeaters

3/27

Impact on Design Techniques

Physically-aware synthesis
Minimize impact on placement
Cannot assume simple unmapped netlists,
e.g., AND/NOT/OR circuits
Avoid costly netlist conversions

Aggressive optimization required
Find optimizations post-synthesis

4/27

Optimization with Node Mergers

Merge equivalent nodes
Area reduction
Eq. checking applications
Scalable w/SAT & simulation
Exploits satisfiable/controllable
don’t cares

Consider downstream logic
Exploits observability don’t-cares (ODCs)
Find more mergers

A B

A = B? ?

5/27

Node Mergers with
Global Don’t Cares

We implement an aggressive synthesis strategy
Perform node mergers in the presence
of satisfiable/observability don’t cares

Not restricted to local don’t cares [Zhu et al. DAC ’06]
Focus on post-synthesis optimizations

Fast Global
ODC

Analysis

Mapped
Netlist

Our Global Node Merging Framework

Incremental
Verification

Node Merging Candidates

Signature Refinement

Optimized
Mapped
Netlist

6/27

Outline

Background
Approximate global ODC analysis
Incremental node merging verification
Previous work
Experiments and conclusions

7/27

Signatures and Bit Simulation

Signature: partial truth table associated
with each node in a circuit
Stimulate inputs with random simulation vectors
Generate signatures through
bit-parallel simulation

I2

I3

111

011

I4

111 O2

I1
0103 random simulation for 4 inputs

011
011

O1

011Generate signatures Sig(O1) = {011}

8/27

Finding Node Equivalence
with Simulation

Identify potential equivalence with signatures
Verify with SAT—refine simulation if not equivalent
Applications in verification, And-Inverter Graphs (AIGs)
[Kuehlmann et al. ’02, Mishchenko et al. ’06]

I2

I3

111

011

I4

111 O2

I1
010

011
011

O1

011

Sig(O1) = Sig(O2)

Assert(1)

SAT = not equiv
UNSAT = equiv

9/27

Satisfiable Don’t Cares

Input patterns that cannot happen
Handled implicitly by simulation

F(x(a,b,c),y(a,b,c)) ≡ F(x,y) – SDC(x,y)

a

b

c

F

x

y

No simulation vector for a,b,c generates x = 1, y = 0

10/27

Finding Observability Don’t Cares

Internal value does not affect outputs
(limited observability)
Not accounted for by traditional simulation

ODC-signature: ODC(F(a=0,b=0,x1,x2,x3)) = 1

a

F

F is a don’t-care when a=0, b=0

b

x1
x2
x3

11/27

Outline

Background
Approximate global ODC analysis
Incremental node merging verification
Previous work
Experiments and conclusions

12/27

100

Deriving Global ODCs

Compute ODC signature for each node
Naïve algorithm: O(n) for one node

O(n2) for circuit

I2

I3

111

011

I4

110 O2

I1
011

011
010

O1

011

Find ODCs for this node for the 3 input vectors

1. Invert node’s signature

2. Propagate differences

111

100

3. ODC for a given
simulation vector
where no difference
occurs at any output

001

ODC for this node’s last simulation vector

13/27

Fast Approximate ODC Analysis

Linear traversal from POs to PIs
Exact without reconvergence

Less scalable per node computation [Zhu et al. DAC ’06]

Algorithm
1. Examine each of target’s FO

2. Union ODC(FO) with
local ODC for each FO

3. Intersect ODCs for each FO

TARGET

A
ODC(A) = {1…}

B

C

ODC(B) = {0…}

ODC(C) = {0…}

{0…}

{1…}

{0…}

{0…}

{0…}

{1…}
{1…}

ODC(Target) = {1…}

ODC(Target) = {0…}

ODC(Target) = {1…}

ODC(Target) = {0…}

14/27

False Positive and Negatives

Incorrect simulation due to reconvergence
Happens infrequently
Verified with SAT

0
1

1

1

False positive = adding false ODCs False negative = removing actual ODCs

0
1

1

0

15/27

Identify Merger Candidates

Find candidate for later verification
Use ODCs and signatures of each node
G is a candidate to replace F i.f.f.

{Sig(F) – ODC(F)} ≤ Sig(G) ≤ {Sig(F) + ODC(F)}
i.e., node G is bounded by function interval of F

16/27

Outline

Background
Approximate global ODC analysis
Incremental node merging verification
Previous work
Experiments and conclusions

17/27

Proving Node Mergers up to ODCs

Verify mergers indicated by simulation
Use counter-examples to refine simulation
[Zhu et al. DAC ’06, Mishchenko et al. ’06]
Naïve approach

Merge node in netlist
Perform equivalence check over primary outputs

a
b
c

Miter

merger performed

a
b
c

18/27

Dominator Algorithm
Not all downstream logic is necessary
to validate a merger
Our approach:

Choose a set of dominating nodes from the
merger site that form a cut through the circuit
Place miters along the cut
Run SAT and refine cut as necessary

a
b
c

a
b
c

a
b
c

a
b
c

Not equivalent—
refine cut from
counter-example

19/27

Finding Dominators

When merging node G onto F
Simulate a subset of the differences between Sig(G) and Sig(F)
Find downstream nodes of F where differences disappear

Similar to finding the D-Frontier in the ATPG domain
Simulate counter-examples from SAT to extend the cut
Stopping conditions:

The solver returns UNSAT—can merge
The solver returns SAT and the simulated differences
reach a primary output—can’t merge

20/27

Outline

Background
Approximate global ODC analysis
Incremental node merging verification
Previous research
Experiments and conclusions

21/27

Exploiting Don’t-Cares
Previous: primarily local analysis
Global SDCs through simulation [Goldberg et al. ’01,
Kuehlmann et al. ’02, Mishchenko et al. ’06]
Small windows to exploit local SDCs and ODCs
[Mishchenko et al. ’05]
Simulation+SAT to exploit global SDCs and local ODCs
[Zhu et al. DAC ’06]

Local ODCs approximated by considering <6 levels of logic
Ours: Fast approximate simulation and incremental verification
to exploit global SDCs and ODCs

Target Node

22/27

Outline

Background
Approximate global ODC analysis
Incremental node merging verification
Previous work
Experiments and conclusions

23/27

Experimental Setup

IWLS ’05 OpenCore benchmarks
Synthesis tool used

Local rewriting (Berkeley’s ABC package)
Simple mapping of 2-input gates

Combinational sections of circuits considered

24/27

Pre/Post-Synthesis Optimization

21957
15514
13178

10093
8279
3342

2655
1058
1055

#gates

30875
28432
24856

17488
14130
6440

4419
2149
1898

#gates

9.2%214419.0%5729aes_core

4.7%17.6%average

1.4%18615.0%4141usb_funct
2.0%18512.6%3124ac97_ctrl

3.8%51821.0%3532systemcaes
7.1%60618.2%2464tv80
1.3%2317.3%1091spi

4.7%11118.9%812systemcdes
9.2%9723.1%446pci_spoci
3.2%3013.4%245i2c

%area
reduction

#mergers%gate
reduction

#mergersCircuit
After Local SynthesisBefore Synthesis

25/27

Local vs. Global Simulation
(Runtime Comparison)

OA Gear implementation of [Zhu et. al]—
levels of downstream logic considered

3.0s7.9s6.3s3.4s3.1s3.0saes_core

2.2s3.3s2.8s2.4s2.3s2.2susb_funct

1.0s1.0s1.0s1.0s1.0s1.0sac97_ctrl

2.3s1300.0s11.9s2.6s2.4s2.3ssystemcaes

2.2s363.0s8.2s2.6s2.3s2.2stv80

0.4s11.2s1.8s0.5s0.5s0.4sspi

0.3s0.6s0.5s0.3s0.3s0.3ssystemcdes

0.1s0.1s0.1s0.1s0.1s0.1spci_spoci

0.1s0.1s0.1s0.1s0.1s0.1si2c

Our global
algorithm
(OA Gear)3216842

Circuit
(unoptimized)

26/27

Global vs. Local
Merger Candidates

89.2%aes_core

59.2%average

Local merging (5 levels)
vs. global merging

96.9%
72.7%
98.3%
75.8%
62.6%

0.5%
11.7%
24.7%

%extra global
mergersCircuit

usb_funct
ac97_ctrl
systemcaes
tv80
spi
systemcdes
pci_spoci
i2c

Each node can have
multiple merger candidates
More candidates=
more flexibility/choices

Physical optimizations
Timing optimizations

27/27

Conclusions

Optimization before and after
aggressive local synthesis
Fast simulation and SAT = scalable global analysis
Global analysis = more merger candidates

