Fast Simulation and Equivalence Checking
using OpenAccess

University o iIchigan
Kai-hui Chang, David A. Papa, Igor L. Markov and Valeria Bertacco
{changkh, iamyou, imarkov, valeria}j@umich.edu

Outline

IWLS 2006 Programming Challenge
OpenAccess Gear

Fast simulation
o Oblivious vs. Event Driven

Equivalence checking with simulation signatures
Incremental Verification

Custom vs. Native implementations

Graphical User Interface extensions

Plug-In interface

IWLS 2006 Programming Challenge

Logic optimization student programming
competition

Must be implemented on OpenAccess and
should make use of OAGear infrastructure

Judged according to correctness, efficiency,
Importance, design, coding style, etc.
15t place was given to two teams

o Sat Sweeping package
o Fast simulation and equivalence checking

Both entries are now part of OAGear

OpenAccess Gear

Release useful tools and libraries to
enable research

Make OpenAccess a useful platform for
academia

Provide common infrastructure for research and
benchmarking

Adopt an open source development model

Initiated and supported by Cadence Design
Systems

Farly OAGear Overview

Focus on four main components
2 GUI: Layout and Schematic Viewer
o Static Timing Analysis

o Generic Standard Cell Placement Interface:

Capo API
aoBenchmarks in OpenAccess Format

OpenAccess

Placement

Static Timing Analysis: OAGear Timer
Built on OpenAccess for integration into other tools, e.g.
placement

Two modes: Full timing analysis and incremental timing analysis

Different models for wires: No wire delay, bounding box model;
can be extended easily to more accurate models

Library formats: Cadence .tIf and Synopsys .lib
Timing constraints: Subset of .sdc constraints
Standardized timing reports

. .
D et al I ed d O (: l l I I l el l tat I O I l MainPage Namespace List CompoundList File List Namespace Members Compound Members Fle Menbers

oaGearTimer::0aGearTimer Class Reference

‘The oaGearTimer class has al the necessary APIs to use this timer package.

#include <paGearTimer.n>

iboration am e e
CELL{FFX1 Cell (DFFX1) {
......... oaGearTimer.0aGearTi
il -
TI:VIQI:II?];ModdUﬂ pln(Q){ #SDC constraint file Ty
(LOAD_AXIS....) timing () { create_clock
(NPUT_SLEW_AXIS....) related_pin : "CK"; —period 1 [get_ports {CK}]
data(... ...) timing_sense : non_unate; set_input_delay 0.04
) tim ingftype :rising_edge; —clock CK [all_inputs] List of all members.
) CE:'&;':;(?‘(ZH " set_output_del ay 0.02 PobiicMatitods
------ indox 2 (. —clock CK [all_outputs]
Path(CK=>Q......) index 2 (“....."); set driving cell oaGearTimer ()
vaues(... ...)3 - 9 it type, const char *IName)
é;etlllxlp(D=CK) } lib_cell INVX2 [get_ports {G*5}] . .
......) set_load 0.01 [get_ports (GZ*}] : t char st:)cName const oaCellView *cv)
dout
) V } V void createTimingPoints (const 0aCellView *cv)
lC void createTimingPoints (oalnst *ins)

zif dib .sdc Documentation

Static Timing Analysis: OAGear Timer
Design

oalnstTerm

oaTerm oaGearTimerPoint
oaGearTimerPoint

oaGearTimerExtDelay

M

& Insti

Standard Cell Library

The timing information is stored

. using the OpenAccess

- H '
. - extension mechanism

| instaniatea| ..'“‘ (0aGearTimerPoint, ...)
N - “

1L

o
Y
—
4
3

oaNet oalnst oaGearTimerPointMaster (with arcs)

Incremental timing analysis

When a modification occurs: Fanin cone
o Mark the required arrival time of
nodes in the fan-in cone invalid Modification
o Mark the arrival time of nodes in the fan-out cone
invalid Query: update arrival
Laterif thereisaquery, update the timing ° lime, requited arrlval
information time and slew rate

Fanout cone

Capo Placement API

Open source placement tool
o Maintained at U. of Michigan
o http://Ivisicad.eecs.umich.edu/BK/PDtools/

Extended to use OpenAccess by the OAGear
CapoWrapper package

o Reads design data directly from OpenAccess

o Builds appropriate Capo data structures in memory

o Reads back Capo data structures and writes results to OA

Example of integrating large mature programs

o Porting to a native codebase would require extraordinary
effort

GUI: Bazaar

Technical Capabilities

Easy to read and extend, built on Qt and OpenGL
In the style and spirit of the OpenAccess standard

Layout Editor displays block domain design data
directly from database

Schematic Editor displays module domain design’s
logical connectivity

Controller operates Capo API for on-demand placement
Fast OpenGL rendering scales to very large designs

“oaRegionQuery” accesses only relevant portions of
the design

‘ Growing Picture a

/

L\

Fast Simulation

Bit-parallel simulation
o 32 or 64 patterns simulated simultaneously

Special cases for common gate types

o Compiler can use CPU instructions to implement
AND, OR, etc.

Levelize the circuit for faster topological
traversals

Simulation Algorithms

Event-driven algorithm
o Evaluates only gates with events
o Suitable when the number of events is small

Oblivious algorithm
o Evaluates all the gates

o Avoids overhead of event scheduling
o Suitable for random simulation

Equivalence Checking With
Simulation Signatures

Easy to disprove equivalence with counter-
examples from simulation

o Signatures mismatch => not equivalent
o Signhatures match => need more testing
SAT-based equivalence checking is
performed when signatures match
Counter-examples are returned

o To help understand the discrepancy
[J. Zhang et al. “Simulation and Satisability
in LogicSynthesis”, IWLS 2005]

Incremental Verification

User specified set of gates to EQ check
o Still need to add GUI support for this feature

Use fast simulation to define Similarity Factor
between two netlists
o (Matching signals) / (number of signals)

o Signals are matching If simulation signature
appears in both circuits

o Small Similarity Factor means potential
discrepancy

o Reported in the GUI equivalence checker

Custom Vs. Native Implementation

Simulator originally used custom data
structures and file 1/O

Ported it to run natively on OpenAccess
Observed significant slowdown in native impl.
o Primarily due to oaAppDef lookup time

Spent significant effort optimizing native impl.

o Converted oaAppDef uses to
std::hash_map<oaNet*>

Unable to match custom impl. performance

Custom vs. Native Experimental Data

Asymptotic improvement over original simulator
Both new simulation algorithms scale linearly

Both scale to realistic circuit sizes
Custom data structures perform better for large inputs

Benchmark Gate Simulator runtime (sec) EQcheck
count OAGear Our simulators runtime
orig. custom | native (sec)

s27 19 9.8e0 0.4 0.4 0.3
s344 132 4.0el 0.4 0.7 0.6
s1196 483 9.5¢el 0.5 1.7 1.6
s15850 685 5.0e3 0.6 2.0 1.8
s9234_1 974 2.4e3 0.7 2.9 2.8
s13207 1218 1.7¢e4 0.8 3.3 3.4
s38417 8278 3.0e5 2.0 21.0 1.4e2
vga_lcd 124031 time-out 20.2 | 3.3e2 2.5¢4

Graphical User Intertace Elements

Gear Bazaar : Elle View Place Windows Help @ MSim

Fle uew Blace timious e & MSIm | S8 Al BERT
SSgem aaE

#, Simulation Data
. Simulation Data

k Result

Next Cycle

[2 |
OxFFTTTOfHIffd |

{ Equivalent: false

¢(Similarity Factor. 7.3077%

2 E |4 5 |6 |7
bif_clk_net blif_clk_net |OxZafbbc22 |GI7 |Oxdf37fed? |G17. |Oxfda3fa72
blf_reset_net biif_reset_net |OxbdaDfBe7 |n_16 [0x1d10R2d5 [n_16 0x3d00f270
GO |0x3d10R255 |n_12 10x20c80128 |n_12 |0x25¢0d8d
Gl (OxBf7Sfddd ~ |n_11 |OxBd75f95d [n_11 |0x70820222
G2 |0x2000480
G3 (Ox76delebi
G5 0x54033252
G6 [x744961ca
G7 0

leloml~loluleslwliml=]

=4 4l R

> run_cycle_simulator
= simulate -lib simEquiTests -cell s27 -liberty gsclib.lib -useOpt -pattemFile [z/|
Reading Liberty file gsclib.lib

> check_design_equivalence
> check_equivalence -ib simEquiTests -ib2 simEquiTests -celll s27 -cell2 s27_bug -randomPattem 1024 -liberty gsclib.lib

+] I [+

| | | Send Command | i ; M‘
e) | =

[Ready [

Similarity Layout View

OAGear Bazaar
File View Place Windows Help & MSim Timer Schematic Editor

Welcome to Bazaar

— I |-5end Command I

|:Read? | 7|

Plug-In Interface tor OAGear Bazaar

Encapsulates

;o Controller
Bazaar’s interface A
Greatly simplifies
extending Bazaar

Facilitates dynamic /e ATPI ‘"\

loading of user code |, User

Decouples user code | (View) ———¥Loader—— Flugin
from Bazaar

Plugln

b 4

Conclusions

|dentified a major component of OAGear with poor
scalability

Wrote new logic simulation engine using different
algorithms

o Reduces runtime by up to 100 times in our experiments
o Asymptotic improvement
Leveraged simulator to speed up equivalence checking

Defined new metric of circuit similarity useful in
Incremental verication and debugging

Extended OAGear's graphical user interface, Bazaar
o Implemented and evaluated several use-cases
o Designed new infrastructure for creating user plug-ins

Future Work in OAGear

Convert existing GUI tools to Plugins
o Layout Editor
o Schematic Editor

More Plugins!
o Waveform viewer for our logic simulator
o User contributions... (hint, hint!)

Develop a communication mechanism between Plugins

Further integration of OAGear Tools into the GUI
o Buffer Insertion, Timer, Sat Sweeping, etc.

More complete Tcl API for OAGear utilities
Possibly an OAGear Router
Ease of use improvements

Thank Youl

Questions?

More screen shots...

7 | Apeay |

| __[___mE

5]

%

7

1

pURWIWOY) pU3S _

IEEZEY 0] SWOD|=aM,

bngoses damaip Aueunsg

10)ipg dneWBYRS WLl wisly FAR: dISH SMOpUIfy 9%e|d M3IA 3T
XEE ieezeg 120V0 %

