
Seeing the Forest and the
Trees: Steiner Wirelength
Optimization in Placement

Jarrod A. Roy, James F. Lu and Igor L. Markov
University of Michigan Ann Arbor

Outline

Motivation
Why current placement tools are outdated
Analysis of placement objectives
A naïve attempt at optimization

Our placement framework
New techniques
Empirical results
Conclusions

Place-and-route
Pivotal step in any design flow
Closely related to physical synthesis
Is becoming harder every year

Greater scale, “boulders and dust”, fixed obstacles
Novel design techniques require P&R support
Heavily affected by variability

P&R in tool flows
Single step for designers?
P&R implemented as separate point tools
Very little interaction/communication
Use different optimization objectives

Motivation (1)

The HPWL (half-perimeter wirelength) objective
hopelessly outdated – does not account for

Routing demand of multi-pin nets
Detours around obstacles
Vias
Impact of buffers on delay (and where buffers can be inserted)

Our goal: reduce the gap between placement and routing
by replacing the HPWL objective with realistic routes

Empirical results: consistent improvement
over all published P&R results
Routability, routed wirelength, via counts
Compared to Silicon Ensemble (Cadence):
26% better routed WL, 3% fewer vias

Motivation (2)

HPWL vs. Steiner Tree WL vs. MST WL

HPWL ≤ Steiner Tree WL ≤ MST WL

Steiner (tree)
wirelength

Minimum Spanning
Tree (MST) wirelength

MST WL:
most accurate
an average
Steiner WL:
best fidelity

Half-perimeter
wirelength

HPWL > rWL ?

Internal cell
wiring not
counted in
rWL

Computing Steiner Trees
Computing HPWL takes linear time, MST super linear
(P log P), but Steiner trees are NP-hard
Steiner Tree tools we evaluate:

Batched Iterated 1-Steiner (BI1ST) [Kahng,Robins 1992]
Slow (n3)
Very accurate, even for 20+ pins

FastSteiner [Kahng,Mandoiu,Zelikovsky 2003]
Faster but less accurate than BI1ST

FLUTE [Chu 2004, 2005]
Very fast
Optimal lookup tables for ≤ 9 pins
Less accurate for 10+ pins

Optimizing Steiner Tree Length

Simple experiment
Take a floorplanner that uses Sim. Annealing
(we used Parquet)
Consider the wirelength term
in its objective function
Replace the HPWL computation
with Min. Steiner-tree length
(we used FLUTE)

Empirical observations
Slow-down (even for 3-pin nets) – expected
Did not improve StWL – very surprising result !

+ = ?

Outline

Motivation
Why current placement tools are outdated
Analysis of placement objectives
A naïve attempt at optimization

Our placement framework
New techniques
Empirical results
Conclusions

Consider placement bins
Partition them

Use min-cut bisection
Place end-cases optimally

Traditional min-cut placement tracks HPWL

Existing Placement Framework

1 2

3 4

Placement bins

End-case
placement

Existing Placement Framework

Propagate terminals
before partitioning

Terminals: fixed cells or
cells outside current bin
Assigned to one of partitions

Save runtime: a 20-pin may
“propagate” into 3-pin net

“Inessential nets”: fixed terminals in both partitions
(can be entirely ignored)

Traditional min-cut placement tracks HPWL

1 2

3

Placement bins

pins of one net
propagated

Introduced in Theto placer
[Selvakkumaran 2004]
Refined in [Chen 2005]

Shown to accurately track HPWL
Uses three net costs

wleft: HPWL when all cells on left side (a)
wright:HPWL when all cells on the right (b)
wcut: HPWL when cells on both sides (c)

In min-cut partitioning, represents
each net with 1 or 2 hyper-edges

Better Modeling of HPWL
by Net Weights In Min-cut

Figure from [Chen,Chang,Lin 2005]

Key Observation
For bisection,
cost of each net is characterized by 3 cases

Cost of net when cut wcut
Cost of net when entirely in left partition: wleft
Cost of net when entirely in right partition: wright

In our work, we compute these costs
using realistic routes

Can/should account for both X and Y
components of cost
Real difficulty in data structures!

Our Contributions
Optimization of Steiner WL

In global placement (runtime penalty ~25%)
In detail placement

Whitespace allocation to tame congestion
Empirical evaluation of ROOSTER

No violations on 16 IBMv2 benchmarks (easy + hard)
Consistent improvements of published results
4-10% by routed wirelength
10-15% by via counts

Vs Cadence: 26% better rWL, 3% fewer vias

Optimizing Steiner WL
During Global Placement
Recall: each net can be modeled
by 3 numbers

This has only been applied to HPWL optimization
We calculate wtop, wbottom, wcut
using Steiner-tree evaluator

For each net, before partitioning starts
The bottleneck is still in partitioning
→ can afford a fast Steiner-tree evaluator

Net Weights from Steiner Trees

For horizontal cutlines: wtop, wbottom, wcut
For vertical cutlines: wleft, wright, wcut

Optimal tree may look very different for each cost
Recompute tree from scratch each time

wtop wbottom wcut

Net Weights from Steiner Trees

Pitfall : cannot propagate terminals !
Nets that were inessential are now essential
Must consider all pins of each net
More accurate modeling, but potentially much slower

wtop wbottom wcut

For each net, two pointsets with multiplicities
Unique locations of fixed & movable pins
At top placement layers, very few unique pin positions
(except for fixed I/O pins)

Avoid repetitive/expensive re-computation
Maintain the number of pins at each location

Sorted by (x,y) to enable batched linear-time operations
Easy detection of duplicates; binary search
Fast maintenance when pins get reassigned to partitions
(or move)

Facilitates efficient computation of the 3 costs
If net has large number (> 20)
of unique locations, resort to HPWL

New Data Structure
for Global Placement

44
22

66

11

Pointsets in Action
Consider a net
with 4 movable pins

44 22 22

22
11

11 11

111111

Results depend on the Steiner tree evaluator
Surprisingly, running 2 or 3 evaluators and picking
min wirelength is worse than using a single evaluator
Quality of Steiner-tree evaluation for 9+ pins matters
But for 20+ unique locations use HPWL (also tried MST)

We choose FastSteiner
(versus BI1ST and FLUTE)

Details in Appendix B of our ISPD`06 paper
Impact of changes to global placement

Results consistent across IBMv2 benchmarks
Steiner WL ↓2.9% , HPWL ↑1.3%, runtime ↑27%

Improvement in Global Placement

We leverage the speed of FLUTE
with two sliding-window optimizers

Exhaustive enumeration for 4-5 cells in a single row
Interleaving by dynamic programming (5-8 cells)

Explores an exponential solution space in polynomial time
Fast but not always optimal

Steiner WL ↓0.69%, routed WL ↓1.39%
[global + detail] runtime ↑11.83%

Optimizing Steiner WL
in Detail Placement 1 2 3 4 5** * *

3 2 5 4 1** * *

1 2 3 4 A** B C D * *

1 A 2 B 3** 4 C D * *

Congestion-based Cutline Shifting
Non-uniform whitespace allocation

Performed during global placement
Uses progressive top-down congestion estimates

Main idea: after each min-cut,
shift the cutline to balance congestion

Area constraints must always be met
More whitespace to the more congested bin

Compared to WSA [Li 2004], no need for legalization,
reduces #vias
Technical difficulty: maintain congestion estimates
efficiently over a slicing floorplan (not a grid)

15%
WS

15%
WS

Congestion
100

10%
WS

20%
WS

Congestion
200

Congestion
150

Congestion
150

Cutline shifting

Empirical Results: IBMv2

7/16Not published1.093FengShui 2.6
1/16Not published1.107Dragon 3.01
0/16Not published1.056Capo 9.2
1/81.1191.042APlace 1.0
0/161.1561.055mPL-R+WSA
0/161.0001.000ROOSTER

10/161.2301.097FengShui 5.1
2/161.0730.968APlace 2.04
0/161.0691.007mPL-R+WSA

ROOSTER: Rigorous Optimization Of Steiner Trees Eases Routing

Routed WL Ratio Via Ratio
Routes with

Violation
Published results:

Most recent results:

ROOSTER with several
detail placers: IBMv2

16/161.2481.114ROOSTER+
FengShui 5.1 DP

2/161.0891.041ROOSTER+
Dragon 4.0 DP

0/161.0040.990ROOSTER+WSA

0/161.0001.000ROOSTER

Routed WL Ratio Via Ratio
Routes with

Violation

AmoebaPlace vs.
IWLS 2005 benchmarks

http://iwls.org/iwls2005/benchmarks.html

All IWLS placements routed with NanoRoute

1.0321.2651.0001.000Ratio
2107617825.4051108350424.447vga_lcd
0857391.1060853290.860usb_funct
21173261.59801156751.176pci_bridge32
0900671.2240891530.890mem_ctrl
14718007.74524133236.145ethernet
11310491.65711266451.271aes_core

rWL Vias Viols rWL Vias Viols
Rooster AmoebaPlace

Improvement Breakdown: IBMv2 easy

V = Violations

Improvement Breakdown: IBMv2 hard

Congestion with and without

Capo -uniformWS

5 hours to route; 120 violations

ROOSTER

22 mins to route; 0 violations

Conclusions
Steiner WL should be optimized
in global and detail placement

Improves routability and routed WL
10-15% improvement in via counts (vs academic placers)
Better Steiner evaluators may further reduce routed WL

Congestion-driven cutline shifting in global placement is
competitive with WSA

Better via counts
May be improved if better congestion maps available

Compared to Cadence P&R
26% reduction in routed WL
3% fewer vias

ROOSTER freely available for all uses
http://vlsicad.eecs.umich.edu/BK/PDtools

Ongoing Work: ECO-system

Challenge: repair/improve an existing placement
A strong detail placer and legalizer
(useful with analytical global placers)
A strong ECO placer
(useful in physical synthesis)

Complications: fixed obstacles, movable macros
Philosophy

Do no harm (leave most cells where they are)
When a section of layout must be redone,
be prepared to re-place all gates in a region

ECO-system
Legalize top-down
For each bin:

Quickly determine cut-line
Check cut-line with single FM pass
If cut improved significantly by FM
or causes overfull child bin, replace

= Overlap= Original Placement
= Untouched by legalizer= Replaced from scratch

1 2 3

4 5 6

3.67%4.91%Average
1.85%881.04149102.24%884.395680932.01%bigblue4

0.79%388.46137087.50%414.293887341.06%bigblue3

1.37%156.6351832.96%159.081425230.15%bigblue2

4.61%105.1418041.44%101.96248628.53%bigblue1

3.04%203.2441324.56%206.231527136.78%adaptec4

7.67%227.3245009.49%231.171149547.12%adaptec3

5.58%99.4720427.88%101.64254347.25%adaptec2

4.67%84.8417303.48%83.87134634.74%adaptec1

APlace 2.04 Global APlace 2.04 Legalizer ECO-system
Overlap Runtime HPWL WL Increase Runtime HPWL WL Increase

DAC`06: floorplan assistant (FLOORIST)
AI-based floorplan legalizer
Preliminary results:

Removes overlaps quickly,
e.g., from APlace placements
Mostly preserves initial placement
Minimal increase in wirelength

AP
la

ce

Red:
overlaps

Blue:
displacement

DAC`06: floorplan assistant (FLOORIST)

