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Abstract. Many important tasks in circuit design and verification can be performed in
practice via reductions to Boolean Satisfiability (SAT), making SAT a fundamental
EDA problem. However such reductions often leave out application-specific structure,
thus handicapping EDA tools in their competition with creative engineers. Successful
attempts to represent and utilize additional structure on Boolean variables include
recent work on 0-1 Integer Linear Programming (ILP) and on symmetries in SAT.
Those extensions gracefully accommodate well-known advances in SAT-solving, but
their combined use has not been attempted previously. Our work shows (i) how one
can detect and use symmetries in instances of 0-1 ILP, and (ii) what benefits this may
bring.

1 Introduction
Recent impressive speed-ups of solvers for Boolean satisfiability (SAT) [12, 17, 22] enabled new

applications in design automation [1, 18, 23]. Reducing an application to SAT facilitates the reuse of
existing efficient computational cores and leads to high-performance EDA tools with little development
effort. However, major concerns about this approach are the loss and ignorance of high-level informa-
tion and application-specific structure. With this in mind, researchers successfully extended leading al-
gorithms for SAT-solving to handle more powerful constraint representations, e.g., 0-1 Integer Linear
Programming (ILP) [1, 4, 5, 10, 24]. Another broad avenue of research leads to pre-processors for ex-
isting solvers and constraint representations, that extract high-level information and guide the solvers
accordingly [2, 3, 6]. Our work extends existing techniques for detecting and using symmetries in SAT
to the more general 0-1 ILP formulation that includes pseudo-Boolean (PB) constraints and an optional
optimization objective.

Asymptotic improvements to SAT-solvers are often illustrated using the task of proving the pigeon-
hole principle without mathematical induction. Leading-edge complete SAT-solvers currently do not
use induction and exhibit exponential runtime on respective instances, which are expressed in conjunc-
tive normal form (CNF), because these instances do not allow polynomial-sized resolution proofs.
However, when FPGA routing instances are modeled by SAT, every FPGA switchbox may generate a
sub-problem equivalent to the pigeonhole principle, trapping SAT-solvers. Because this principle is a
basic property of finite sets, it is likely to be intrinsic to other applications, such as the verification of
multi-threaded programs, circuits with multiple copies of architectural components, and protocols for
multi-party communication.

Recent research offers fully-automated tools that establish the pigeon-hole principle in polynomial
time through the use of symmetry [2, 3, 6] or PB inequalities [5], particularly counting constraints.
These tools have also been validated for important applications, such as FPGA and global routing.



Our work contributes a framework for detecting and using symmetries in instances of 0-1 ILP.
When applied to SAT instances encoded as 0-1 ILPs, our framework works at least as well as those in
[2, 3, 6]. In general, it detects all existing structural permutational symmetries, phase shift symmetries,
and their compositions. We present experimental evidence showing that EDA problems expressed in
PB form (i) sometimes have symmetries, and (ii) can be solved faster within our framework than pre-
viously.

The remainder of the paper is organized as follows. Section 2 presents a brief description of the
CNF and PB representations. Section 3 presents the framework for detecting and using symmetries in
CNF formulas. The framework is extended to handle PB formulas in Section 4. We show experimental
results in Section 5, and the paper concludes in Section 6.

2 Preliminaries
A Boolean formula given in conjunctive normal form (CNF) consists of a conjunction of clauses,

where each clause is a disjunction of literals. A literal is either a variable or its complement. A clause
is satisfied if at least one of its literals has a value of 1, unsatisfied if all its literals are 0, and unresolved
otherwise. Consequently, a formula is satisfied if all its clauses are satisfied, and unsatisfied if at least
one clause is unsatisfied. The goal of the SAT solver is to identify an assignment to a set of binary vari-
ables that would satisfy the formula or prove that no such assignment exists (and that the formula is
unsatisfiable).

In addition to CNF constraints, a Boolean formula can include PB constraints which are linear in-
equalities with integer coefficients1 of the form:

(1)

where and are literals of Boolean variables2. Using the relations ,
, and any arbitrary PB constraint can be con-

verted to the normalized form of (1) consisting of only positive coefficients. This normalization facili-
tates more efficient algorithms.

Figure 1(a) illustrates the difference between the CNF and PB encodings for the pigeon-hole (hole-
2) instance. The instance can be represented by 6 variables, 9 clauses, and 18 literals when using the
CNF encoding or by 6 variables, 5 PB constraints, and 12 literals when using the PB encoding. Clearly,
PB constraints are more efficient than CNF clauses in representing counting constraints.

3 Detecting and Using Symmetries in CNF Formulas
Leading-edge complete SAT solvers [12, 17, 22] implement the basic Davis-Logemann-Loveland

(DLL) algorithm [8] for backtrack search with various improvements. This algorithm has exponential
worst-case complexity and, despite dramatic improvements for practical inputs, the runtime of those
SAT solvers grows exponentially with the size of the input on various instances including the pigeon-
hole [9] benchmarks. The work in [2, 3, 6] empirically showed that the use of symmetry-breaking pred-
icates (i) makes runtime on those instances polynomial, and (ii) speeds up the solution of some appli-
cation-derived instances. Crawford et al. [6] presented a theoretical framework for detecting and using
permutational symmetries in CNF formulas. An extension of this framework in [2] showed how to de-
tect phase-shift symmetries (i.e. symmetries that map variables to their complements) and their compo-
sitions with permutational symmetries. Asymptotic efficiency of these techniques was improved in [3].
The general framework is described next.

1 Floating-point coefficients are also easily handled [1].
2 Any CNF clause can be viewed as a PB constraint, e.g. clause is equivalent to .
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3.1 Detecting symmetries via graph automorphism

Given a graph, a symmetry (also called an automorphism) is a permutation of its vertices that maps
edges to edges. For a directed graph, edge orientations must be maintained. The collection of symme-
tries of a graph is closed under composition and is known as the automorphism group of the graph. The
problem of finding all symmetries of the graph is known as the graph automorphism problem. Efficient
tools for detecting graph automorphism have been developed, such as NAUTY [16] and SAUCY [7].

Constraint CNF-only Encoding Alternative PB Encoding
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Fig. 1. (a) Two possible encodings of the unsatisfiable pigeon-hole instance consisting of 2 holes and
3 pigeons using CNF and PB constraints. denotes pigeon in hole ; (b) graph representing the
CNF formula; (c) graph representing the PB formula. Different vertex shapes correspond to different

vertex colors; (d) generators of the graph automorphism group of (b) and (c).
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Structural symmetries in CNF formulas can be detected via a reduction to graph automorphism
[15]. A CNF formula is represented as an undirected graph with colored vertices such that the automor-
phism group of the graph is isomorphic to the symmetry group of the CNF formula. The two groups
must share a one-to-one correspondence and also be isomorphic to enable the use of group generators
as explained in the Section 3.2.

Assuming a CNF formula with vertices and clauses (single-literal clauses are removed by pre-
processing the CNF formula), a graph is constructed as follows:

• A single vertex represents each clause (clause vertices).

• Each variable is represented by two vertices: positive and negative literals (literal vertices).

• Edges are added connecting a clause vertex to its respective literal vertices (incidence edges).

• Edges are added between opposite literals (Boolean consistency edges).

• Clause vertices are painted with color 1 and all literal vertices (positive & negative) with color 2.

As the runtime of graph automorphism tools, e.g. NAUTY [16] or SAUCY [7], usually increases
with growing number of vertices, each binary clause can be represented with a single edge between the
two literal vertices rather than a vertex and two edges (see Figure 1(b)). This optimization can, in some
cases, result in spurious graph automorphisms [2]. Fortunately, this is uncommon in CNF applications,
and spurious graph symmetries are easy to test for [2].

3.2 Using symmetries

Symmetries induce an equivalence relation on the set of truth assignments of the CNF formula, and
every equivalence class (orbit) contains either satisfying assignments only or unsatisfying assignments
only [6]. Therefore SAT-solving can be sped up, without affecting correctness, by considering only a
few representatives (at least one) from each equivalence class. This constraint can be conveniently rep-
resented by conjoining additional clauses (symmetry-breaking predicates - SBPs) to the original CNF
formula. One particular family of representatives are lexicographically smallest assignments in each
equivalence class (lex-leaders). Crawford et al. [6] introduced an SBP construction whose CNF repre-
sentation is quadratic in the number of problem variables. Their construction assumes a given variable
ordering and produces a permutation predicate (PP) for each permutational symme-
try in the group of symmetries as follows:

(2)

where is the image of variable under permutation .
Aloul et al. [3] described a logically equivalent, but more efficient tautology-free SBP construction,

whose size is linear, rather than quadratic, in the number of problem variables. In practice smaller SBPs
may decrease search time. Strong empirical evidence in [3] shows that full symmetry breaking is un-
necessary and that partial symmetry breaking is often more effective, because the number of symme-
tries can be very large. In particular, the authors showed that applying symmetry-breaking to a set of
generators3 of the group of symmetries rather than the entire set of symmetries leads to significant runt-
ime and memory reductions. It is not necessary for the set of generators to be irredundant, but, accord-
ing to empirical data, adding generators expressible in terms of other generators does not improve

3 Generators represent a set of symmetries whose product generates the complete set of symmetries. An
irredundant set of generators for a group with symmetries consists of at most symmetries [11].
While their number can be as small as two, it typically grows with the size of the group. The graph shown in
Figure 1(b) has 12 symmetries that can be captured using the 3 generators shown in Figure 1(d).
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overall runtime. Moreover, standard algorithms for the graph automorphism problem always produce
irredundant sets of generators. Those sets are typically not minimal and are, surprisingly, better for sym-
metry-breaking purposes than minimal sets that can be produced using group-theoretic algorithms in
the GAP system at the cost of longer computation. If a given set of generators does not generate the full
group, it may still be used for symmetry-breaking, but can also be improved. All in all, irredundant sets
of generators produced by graph automorphism programs such as NAUTY and SAUCY tend to lead to
the best overall runtimes in our symmetry-breaking flows.

4 Detecting and Using Symmetries in PB Formulas
Similar to the techniques from [2] (summarized in Section 3), we build a graph whose automor-

phism group is isomorphic to the group of PB symmetries. A graph automorphism program would pro-
duce generators of the automorphism group, which we reapply to the original PB instance. The
isomorphism of the two symmetry groups is required to implicitly manipulate these groups in terms of
generators. While our graph construction is novel, detected symmetries can be used by means of the
known symmetry-breaking predicates (SBP) for SAT [3] because those are also applicable to 0-1 ILPs.

4.1 Graph construction for PB formulas

Given a formula with variables, clauses, and PB constraints, we build a graph as follows:

• Variables are treated exactly the same as in the CNF case: two vertices per variable represent
positive and negative literals. Each such pair is connected by a Boolean consistency edge.

• Any non-PB (pure CNF) clauses are also treated just like in the CNF case: two-literal clauses are
represented by an edge connecting both literals. For other clauses, a vertex is created to represent
the clause, and incidence edges connect the clause vertex to its literal vertices.

• Clause vertices are painted in color 1, and literal vertices in color 2.

• Literals in a PB constraint are organized as follows:

– The literals in are sorted by coefficient value, and literals with the same coefficient are
grouped together. Thus, if there are different coefficients in , we have disjoint
groups of literals, .

– For each group of literals, , with the same coefficient, a single vertex (coefficient
vertex) is created to represent the coefficient value. Edges are then added to connect this
vertex to each literal vertex in the group.

– A different color is used for each distinct coefficient value encountered in the formula. This
means that coefficient vertices that represent the same coefficient value in different
constraints are colored the same.

• Each PB constraint is itself represented by a single vertex (PB constraint vertex). Edges
are added to connect to each of the coefficient vertices, that represent its
distinct coefficients.

• The vertices are colored according to the constraint’s right-hand side (RHS) value
. Every unique value implies a new color, and vertices representing different constraints

with the same RHS value are colored the same.

Figure 2 shows a graph that represents a formula with both CNF clauses and PB constraints. CNF
clauses are represented as in Section 3, but PB constraints have different coefficients and require special
treatment as explained above. Vertices and represent the coefficient value of 1 and are
shown as upward triangles (for color), while and represent the coefficient value of 2 and
are shown as downward triangles (a different color). The two PB constraint vertices, and , have
the same color/shape since the two PB constraints have equal RHS values.
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4.2 Proof of correctness

We will rely on the correctness proof of the graph construction for CNFs proposed in [2]. To restate
their key result, we first review the necessary terminology. A circular chain of implications over the
variables is defined in [2] as a set of binary clauses equivalent to

, where for each , or .
Assigning a value to any triggers an implication sequence that determines the values of all literals
involved. Thus, such a chain allows only two satisfying assignments. The key theorem follows.

Theorem 4.1 Assume that a given CNF formula does not contain a circular chain of implications
over any subset of its variables. Then, with respect to the proposed construction of the colored graph
from a CNF formula, the symmetries of the formula correspond one-to-one to the symmetries of the
graph [2].

The caveat with circular chains is due to an optimization where binary clauses, unlike larger claus-
es, are represented by single edges.This reduces the number of vertices, but now binary-clause edges
and Boolean consistency edges are indistinguishable. A graph symmetry mapping a binary-clause edge
to a Boolean consistency edge (or vice versa) would not correspond to a SAT symmetry. Using a
graph-theoretical lemma, the work in [2] shows that such spurious symmetries require circular chains
of implications. Moreover, such chains are trivial to test for and do not appear in practice. In the graph,
a chain of implications corresponds to a cycle with alternating positive and negative literal vertices.

To establish an analogous result for our graph construction for PB formulas, we first observe that
the addition of PB constraints to a CNF formula cannot create new alternating cycles in the graph. That
is because the colors of PB constraint and coefficient vertices are different from the colors of literal and
clause vertices. It is thus impossible for an edge connecting literal vertices to coefficient vertices (or
coefficients to PB constraints) to be mapped into a Boolean consistency edge. Therefore, the only pro-
hibited case for PB formulas is the presence of implication chains in the CNF component.

Theorem 4.2 Assume that a given formula, with CNF and PB constraints, does not contain a circu-
lar chain of implications over any subset of its variables in its CNF component. Then, with respect to
the proposed construction of the colored graph from a PB formula, the symmetries of the formula cor-
respond one-to-one to the symmetries of the graph.

Proof. We begin by showing that any symmetry in the original formula corresponds to a colored sym-
metry in the constructed graph. A permutational symmetry that maps to in the formula will map
vertex to vertex , vertex to vertex , and the edge to in the graph. Since all
have the same color, the symmetry is preserved. For a phase shift symmetry, vertices and are in-
terchanged, leaving the edge in place, and any binary clausal edges are swapped at the correspond-

Fig. 2. Example showing the graph representing formula .
Different vertex shapes corresponds to different vertex colors.
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ing clause vertex. For example, edges and are swapped through vertex . For a PB formula,
and might also be connected to one or more coefficient vertices. These connections would also be
swapped at the respective vertices. Again, only vertices of the same color are mapped one to another.
Thus a consistent mapping of literals or variables in the formula, when carried over to the graph, must
preserve the colors of graph vertices.

We now show that every colored symmetry in the graph corresponds to a symmetry in the original
formula. This is easily seen in the PB case because we use one color for literals, one for non-binary
clauses, one set of colors for coefficient values, and one set for coloring constraints according to RHS
value. Different groups above use different colors. Therefore, if then since is the only
vertex connected to that is the same color as . A similar statement is more difficult to prove in the
presence of CNF clauses, but it is proven in [2] for CNF clauses under the assumption that no circular
chains of implications exist and is extended to mixed CNF-PB formulas as explained above.

Theorem 4.3 Under the assumption of Theorem 4.2, the symmetry groups of the PB formula and the
multicolored graph are isomorphic.

Proof. It can be easily verified that the one-to-one mapping of symmetries described above is a homo-
morphism. Furthermore, a one-to-one homomorphism is an isomorphism.

Given a colored graph symmetry, we can uniquely reconstruct the PB symmetry to which it corre-
sponds, provided we maintain the correspondence between variables and their positive and negative lit-
eral vertices. Symmetries in the graph are detected using SAUCY [7], and used to reconstruct
symmetries in the PB formula. SBPs are added to the formula as CNF clauses using the efficient con-
struction in [3]. The use of SBPs results in significant pruning of the search space and can speed up PB
solvers as demonstrated in Section 5.

4.3 Handling an optimization function

To accommodate an optimization objective in 0-1 ILP instances, one has to intersect the symme-
tries of the PB constraints (which we already can detect) with the symmetries of the objective. Rather
than find those two groups separately and compute the intersection explicitly, we modify our original
graph construction to produce the intersection instantly.

The objective function is represented by a new vertex of a unique color4 and coefficient vertices in
the same way as PB constraints are represented. The function vertex connects to its coefficient vertices,
which connect to literals appearing in the objective function with respective coefficients. This construc-
tion prohibits all PB symmetries that modify the objective function.

When symmetries are detected for PB constraints, their use through known SBPs for SAT symme-
tries is justified by the fact that we are still dealing with a constraint satisfaction problem on Boolean
variables. However, additional reasoning is required to substantiate the use of the same SBPs in an op-
timization problem. The intuition here is that by breaking symmetries, one can speed up search without
affecting the optimal cost in the optimization problem. We now show that adding SBPs preserves at
least one optimal solution, and thus the optimal cost.

SBPs must pick at least one representative from every equivalence class under symmetry. If one
truth assignment in such an orbit satisfies all PB constraints, then so do all assignments in the orbit. Fur-
thermore, if an orbit contains such satisfying assignments, they all must have the same cost because they
are symmetric. Given an optimization problem, there must be at least one solution with the optimal cost.
By the arguments above, SBPs will preserve at least one solution from the same orbit, and that solution
must have the same cost. Thus, the optimal cost is preserved.

4 Note that whether we are dealing with a maximization or a minimization objective does not affect symme-
tries, hence this information is ignored.

ac ac c a
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5 Experimental Results
In this section, we empirically show the advantage of breaking symmetries in formulas consisting

of CNF and PB constraints. The experiments are performed on an Intel Pentium IV 2.8 GHz machine
with 1 GB of RAM running Linux. The time-out limit for all experiments is set to 1000 seconds. The
benchmarks include instances from the pigeon-hole [9], global routing (grout) [1], and FPGA routing
(fpga, chnl) [20] set. We use the recent PB SAT solver PBS [1] with the settings “-D 1 -z”. PBS incor-
porates modern CNF-SAT solver features implemented in Chaff [17] and can handle both CNF and PB
constraints. We use the new graph automorphism tool SAUCY [7] which is empirically faster than
NAUTY [16]. Symmetry-breaking predicates [3] are applied to generators of the symmetry group
found by SAUCY.

Table 1 and Table 2 list symmetry detection runtimes, the number of symmetries, and symmetry
generators. The size of the original formula and the SBP, in terms of the number of variables, clauses,
and PB constraints, are shown too. The tables also compare runtimes for solving original instances and
instances augmented with SBPs. Table 1 reports on the PB formulation and Table 2 reports on a CNF-
only formulation derived by converting the PB constraints using the exponential transformation de-
scribed in [1]. S/U indicates if the formula is satisfiable or unsatisfiable. We observe the following:

Table 1. Search runtimes of PB formulas with and without SBPs (for generators only) using PBS. Size
of original instances and SBPs is shown. Symmetry statistics including symmetry detection runtime,

number of symmetries, and generators are also provided. All runtimes are reported in seconds.

Alternative PB encoding

Instance
name S/U

Instance size Symmetry statistics PBS time
Orig SBP SAUCY

time
#

Sym
#

Gen Orig w/
SBPV C PB V C

hole-7 U 56 8 7 97 362 0.01 2.0E+08 13 0.11 0
hole-8 U 72 9 8 127 478 0.01 1.5E+10 15 0.64 0
hole-9 U 90 10 9 161 610 0.01 1.3E+12 17 7.35 0
hole-10 U 110 11 10 199 758 0.01 1.5E+14 19 66.3 0
hole-11 U 132 12 11 241 922 0.01 1.9E+16 21 431 0

fpga10_8 S 120 88 18 256 980 0.02 6.7E+11 22 349 0
fpga10_9 S 135 99 19 223 846 0.02 1.5E+13 23 >1000 0
fpga13_10 S 195 140 23 334 1280 0.06 1.9E+17 28 >1000 0.01
fpga13_11 S 215 154 24 371 1424 0.06 1.3E+19 30 >1000 0.03
fpga13_12 S 234 168 25 406 1560 0.08 9.0E+20 32 >1000 0.05
chnl10_11 U 220 22 20 508 1954 0.05 4.2E+28 39 65 0
chnl10_12 U 240 24 20 556 2142 0.06 6.0E+30 41 93 0
chnl10_13 U 260 26 20 604 2330 0.07 1.0E+33 43 112 0
chnl11_12 U 264 24 22 614 2370 0.07 7.3E+32 43 719 0
chnl11_13 U 286 26 22 667 2578 0.09 1.2E+35 45 743 0
chnl11_14 U 308 28 22 720 2786 0.10 2.4E+37 47 >1000 0

grout-3.3-1 S 216 572 12 24 92 0.01 4 2 0.04 0
grout-3.3-2 S 264 700 12 60 230 0.01 48 5 0.12 0
grout-3.3-3 S 240 636 12 60 230 0.01 32 5 0.05 0
grout-3.3-4 S 228 604 12 36 138 0.01 12 3 0.04 0
grout-3.3-5 S 240 634 12 48 184 0.02 16 4 0.01 0
grout-3.3u-1 U 624 1850 24 72 282 0.07 8 3 102 0.58
grout-3.3u-2 U 672 1988 24 144 564 0.11 96 6 353 2.14
grout-3.3u-3 U 624 1844 24 96 376 0.07 16 4 420 3.00
grout-3.3u-4 U 672 1994 24 216 846 0.17 1152 9 9.88 0.33
grout-3.3u-5 U 648 1924 24 264 1034 0.20 6912 11 14.7 0.05

Total - 7365 13595 460 7104 27356 1.41 2.4E37 530 >8487 6.19



• All presented instances exhibit structural symmetries, but none of the instances have phase-shift
symmetries.

• The pigeon-hole and FPGA routing instances contain large numbers of symmetries. These
symmetries, however, are compactly represented using irredundant sets of no more than 50
generators.

• SAUCY detects all symmetries in each instance in a fraction of a second for PB formulas.
However, formulas expressed in CNF-only form yield larger graphs on which SAUCY runs
much slower.

• The addition of SBPs using the construction defined in [3] significantly reduces the SAT search
runtime.

• Except for the grout-3.3u-2 and grout-3.3u-3 instances, all PB formulas are solved in less than a
second after adding their SBPs. Note that the number of symmetries and generators is small in
the grout-3.3u-2 and grout-3.3u-3 instances and so results in smaller speed-ups.

• In most cases, the SAT search runtimes are greater for CNF-only instances than for PB instances.
An exception is the instance grout-3.3u-3 which is solved in 1.2 seconds after adding the SBPs

Table 2. Search runtimes of CNF formulas with and without SBPs (for generators only) using PBS.
Size of original instances and SBPs is shown. Symmetry statistics including symmetry detection
runtime, number of symmetries, and generators are also provided. All runtimes are reported in

seconds. The CNF-only formulation is derived by converting the PB constraints using the exponential
transformation described in [1].

CNF-only encoding

Instance
name S/U

Instance size Symmetry statistics PBS time
Orig SBP SAUCY

time
#

Sym
#

Gen Orig w/
SBPV C V C

hole-7 U 56 204 97 362 0.01 2.0E+08 13 0.2 0
hole-8 U 72 297 127 478 0.01 1.5E+10 15 4.2 0
hole-9 U 90 415 161 610 0.01 1.3E+12 17 111 0
hole-10 U 110 561 199 758 0.01 1.5E+14 19 850 0
hole-11 U 132 738 241 922 0.02 1.9E+16 21 >1000 0.01

fpga10_8 S 120 448 256 980 0.01 6.7E+11 22 13.2 0
fpga10_9 S 135 549 223 846 0.02 1.5E+13 23 475 0
fpga13_10 S 195 905 334 1280 0.04 1.9E+17 28 >1000 0.02
fpga13_11 S 215 1070 371 1424 0.05 1.3E+19 30 >1000 0.02
fpga13_12 S 234 1242 406 1560 0.07 9.0E+20 32 >1000 0.02
chnl10_11 U 220 1122 508 1954 0.04 4.2E+28 39 628 0
chnl10_12 U 240 1344 556 2142 0.05 6.0E+30 41 >1000 0
chnl10_13 U 260 1586 604 2330 0.05 1.0E+33 43 >1000 0
chnl11_12 U 264 1476 614 2370 0.06 7.3E+32 43 >1000 0
chnl11_13 U 286 1742 667 2578 0.07 1.2E+35 45 >1000 0
chnl11_14 U 308 2030 720 2786 0.08 2.4E+37 47 >1000 0

grout-3.3-1 S 216 37292 24 92 2.11 4 2 0.07 0.05
grout-3.3-2 S 264 88480 60 230 18.15 48 5 0.21 0.11
grout-3.3-3 S 240 58776 60 230 10.34 32 5 0.11 0.05
grout-3.3-4 S 228 47116 36 138 3.04 12 3 0.28 0.05
grout-3.3-5 S 240 58774 48 184 7.8 16 4 0.09 0.1
grout-3.3u-1 U 624 360650 72 282 224 8 3 >1000 103
grout-3.3u-2 U 672 493388 144 564 686 96 6 30.2 11.2
grout-3.3u-3 U 624 360644 96 376 291 16 4 5.00 1.1
grout-3.3u-4 U 672 493394 n/a n/a >1000 n/a n/a 2.03 n/a
grout-3.3u-5 U 648 423124 n/a n/a >1000 n/a n/a 4.03 n/a

Total - 7365 2.4M >6K >25K >3243 >2.4E37 >510 >12K >116



to the CNF-only formula, compared to 3.4 seconds for the PB formula. Further investigation
showed that this is a side effect of the VSIDS decision heuristic [17] implemented in PBS which
tends to first choose variables that occur frequently in the formula. The exponential conversion
replaces a single PB constraint with multiple CNF clauses, which naturally increases the number
of variable occurrences. In any case, the symmetry detection runtime in the CNF-only case is 291
seconds versus 0.07 seconds in the PB case.

• SAT search runtime and symmetry detection runtime are not correlated.

Since we know that PB constraints can be expressed as pure CNF constraints (and vice versa), it is
of interest to know whether symmetries are preserved in the CNF version of a PB formula. It is possible
to convert a PB formula to CNF using exactly the same variables, but adding exponentially many claus-
es [1]. Such a conversion is itself symmetric and preserves all symmetries. However, symmetry detec-
tion runtimes are likely to be longer, since larger graphs are constructed. This is clearly shown in Tables
1 and 2. On the other hand, the linear-overhead conversion used in [1] for global routing uses additional
variables to simulate “counting” constraints. This conversion avoids exponential overhead, but destroys
symmetries from the PB formula because it uses adder and comparator circuits to enforce counting
constraints. The comparator circuit has an inherent direction, and that is incompatible with symmetry.

In alternative experiments we replace PBS by the best commercial ILP solver CPLEX [13] (we use
version 7.0). Surprisingly, symmetry-breaking slows down CPLEX. The specific algorithms used by
CPLEX are not described publicly, and without such knowledge it is difficult to explain our empirical
observations. However, it is known that some algorithms for Boolean Satisfiability, e.g., the heuristic
solver WalkSAT [21], are also slowed down when symmetries are broken [19]. Yet, all major complete
solvers are sped-up by symmetry-breaking [2].

Table 3. Results of the Max-SAT experiment.

Unsat instance Symmetry statistics PBS time

Name V C SAUCY
time

#
Sym

#
Gen Orig w/

SBP
chnl7_9 126 522 4 0.47 6.7E+18 29 >1000 0.37
chnl8_9 144 594 2 0.56 4.3E+20 31 35 0.43
chnl8_10 160 740 4 1.03 4.3E+22 33 >1000 0.95
chnl9_10 180 830 2 1.10 3.5E+24 35 438 0.37
chnl9_11 198 1012 4 2.01 4.2E+26 37 >1000 10.8
hole-7 56 204 1 0.04 (7!)(8!) 13 0.32 0.01
hole-8 72 297 1 0.09 (8!)(9!) 15 7.51 0.01
hole-9 90 415 1 0.19 (9!)(10!) 17 76 0.03
hole-10 110 561 1 0.36 (10!)(11!) 19 >1000 0.02
hole-11 132 738 1 0.66 (11!)(12!) 21 >1000 0.06

Table 4. Results of the Max-ONE experiment.

Satisfiable instance Symmetry statistics PBS time

Name V C SAUCY
time

#
Sym

#
Gen Orig w/

SBP

fpga8_7 84 273 14 0.01 4.2E+08 17 >1000 0.01
fpga9_7 95 317 14 0.01 2.1E+09 18 >1000 0.01
fpga9_8 108 396 16 0.01 6.7E+10 20 >1000 0.01
fpga10_8 120 448 16 0.01 6.7E+11 22 >1000 0.01
5-queens 125 6460 5 0.02 8(5!) 6 18.1 0.04
6-queens 216 16320 6 0.03 8(6!) 7 >1000 0.64
7-queens 343 35588 7 0.09 8(7!) 8 >1000 9.87
8-queens 512 69776 8 0.27 8(8!) 9 >1000 214
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In order to evaluate the advantage of breaking symmetries in Boolean optimization problems, we
tested Max-SAT instances from the FPGA routing and pigeon-hole set, in addition to Max-ONEs in-
stances from the FPGA routing and n-queens set. The goal in the Max-SAT experiment is to identify a
variable assignment that maximizes the number of satisfied CNF clauses in an unsatisfiable instance.
On the other hand, the goal in the Max-ONE experiment is to identify the variable assignment that max-
imizes the number of variables set to 1 in a satisfiable instance. The Max-SAT and Max-ONEs instances
were constructed as shown in [1]. The results for the Max-SAT and Max-ONEs experiments are listed
in Table 3 and Table 4, respectively. Both tables indicate the size of the original CNF formula. The ta-
bles also list the symmetry detection runtimes, number of symmetries, and symmetry generators. The
runtimes for solving original instances and instances augmented with SBPs are also shown. “ ”
in Table 3 indicates the minimum (i.e. optimal) number of original unsatisfiable clauses. “ ”
in Table 4 indicates the maximum (i.e. optimal) number of 1s in a satisfying assignment.

We constructed n-queens instances in terms of CNF constraints (at most one queen per row, per
column and per diagonal). Each of those instances has 8 geometric symmetries (of the board), and also
n! permutational symmetries. All of those symmetries were detected in our experiments, and respective
symmetry-breaking predicates significantly reduce overall runtime.

6 Conclusions
Our work is motivated by the desire to capture and exploit structural information in Boolean prob-

lems. We build upon previous work that (i) extends leading SAT-solvers to handle more expressive
constraints, such as pseudo-Boolean constraints, as well as optimization objectives [1, 4, 5, 10], and (ii)
offers pre-processing techniques for SAT that detect and use symmetries in CNF instances [2, 3, 6]. Our
main contribution is a similarly efficient pre-processing for 0-1 ILP instances that detects and uses sym-
metries to speed up search and optimization. Our empirical validation shows that on some application-
derived instances, such as FPGA routing, we obtain a speedup of several orders of magnitude after
breaking symmetries. We also study the possibility of re-expressing PB constraints in terms of CNF and
conclude that this may lead to the loss of symmetry information or cause a substantial increase in prob-
lem size.

Our on-going work includes studying possible optimizations of our graph construction. In addition,
we hope to facilitate the use of more expressive constraints, e.g. PB, in new EDA applications.
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