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Abstract

The development of EDA tools is driven by the desire to
find near-optimal solutions for circuits of increasing size.
However, quantifying sub-optimality and scalability of op-
timization heuristics is non-trivial. We follow related de-
velopments in physical design where tools for circuit par-
titioning and placement miss optimal solutions by up to a
factor of two on multi-million-gate netlists. We estimate
the growth of optimal costs in specific scalable logic syn-
thesis problems and show empirically that existing tools
Espresso , SIS andBDSappear to produce exponentially
sub-optimal circuits in several cases. While small circuits
for multiplication are well-known and are “instantiated” by
commercial tools rather than synthesized from scratch, we
demonstrate a logic synthesis problem where all known an-
swers appear exponentially sub-optimal.

1 Introduction

Problems solved by modern EDA tools are often compu-
tationally intractable from the worst-case perspective, and
algorithm developers have to resort to heuristics. Empi-
rical evaluation is typically performed on industrial circuits
where optimal solutions are unknown. Thus, it is difficult to
say how much improvement can be achieved by algorithm
innovation in the future — a question of interest to EDA
vendors, researchers and funding agencies.

Several works in physical design propose to eva-
luate the optimality of existing EDA tools by con-
structing artificial benchmarks with known solutions
[HagenHK95, ChangCX03] or upper bounds on opti-
mal costs [HagenHK95, CongRX03]. As a result, sub-
optimality gaps ranging from 40% to over 100% have been
demonstrated for recent VLSI placers in terms of half-
perimeter wirelength [ChangCX03]. Since artificial bench-
marks are not limited by size and can be scaled up astro-
nomically, it was shown that currently-achievable place-
ments of larger circuits (up to 2 million gates) exhibit
growing sub-optimality, but some placers scale reasonably

well. In hypergraph partitioning, similar techniques are
used in [CongRX03] to compare two min-cut bisectors,
of which one consistently tracks optimal costs while the
other sometimes misses by up to 30% and is asymptotically
slower. VLSI routing instances with known good solutions
were constructed in [AloulRMS03] using a technique called
“flooding”. Needless to say, good performance on artifi-
cial benchmarks does not guarantee good performance on
industrial circuits. However, improving the performance of
existing tools on artificial benchmarks may lead to improve-
ments in the real-world, and the simpler structure of arti-
ficial benchmarks may facilitate more efficient algorithms
engineering, as well as program debugging.

Our work addresses similar questions for logic synthe-
sis tools. It includes both theoretical analyses and empiri-
cal results produced with existing tools Espresso, SIS and
BDS. Moreover, we propose a scalable synthesis problem
for which all of those tools appear to produce exponen-
tially sub-optimal circuits. Unlike for the synthesis of mul-
tiplier circuits, no polynomially-sized circuits are currently
known, despite an abstract proof that such circuits exist. Be-
cause of this, synthesis tools cannot store pre-computed cir-
cuits and instantiate them on demand, as is done with mul-
tipliers. Thus, our experiments address the limits of scala-
bility for existing logic-synthesis tools and cast doubts on
folklore claims that “RTL-to-GDSII design automation is a
solved problem”. We also point out that, unlike in phys-
ical design, where demonstrated sub-optimality is largely
limited by constant factors, existing logic synthesis tools
apparently produce exponentially sub-optimal solutions.

The remaining part of this manuscript is organized as fol-
lows. Previous work is surveyed in Section 2. In Section
3, we examine the performance of synthesis tools on com-
mon synthesis problems. In Section 4, we propose a way
to evaluate the sub-optimality and scalability of synthesis
tools and show related empirical results. Conclusions and
future work are summarized in Section 5.



2 Previous Work

Unlike in logic synthesis, many layout problems are geo-
metric in nature and easy to visualize. This often enables
straightforward constructions, such as grid circuits, with ob-
vious optimal layouts. A 10×10 grid is illustrated in Fig-
ure 5, where a unique optimal placement is shown.1 Grid-
graphs have been used to debug partitioners and placers for
at least 20 years — they are convenient as testcases because
sub-optimalities can be visualized and traced to relevant al-
gorithms and implementations [AdyaEtAl03]. Appendix A
describes more sophisticated ideas proposed to study the
sub-optimality and scalability of physical design tools.

3 Common Logic Synthesis Problems

In this section, we gauge the performance of exist-
ing logic synthesis tools using three common tasks:
parity, addition, and multiplication. All our empiri-
cal results involve three publicly available logic syn-
thesis tools — Espresso [McGeerSBS93, UCBTech],
SIS [SentovichEtAl92, UCBTech] and BDS [YangC02].
Espresso is a two-level logic simplification tool, which we
use in the “exact” mode so that the returned circuits are
provably the smallest possible. SIS is a software package
for multi-level logic optimization. It does not guarantee
achieving minimum gate counts, and one might hope that it
would proceed significantly beyond Espresso’s limitations.
BDS is a multi-level logic minimization tool that is based
on Binary Decision Diagrams, which makes it very differ-
ent from SIS and Espresso. We use truth tables as inputs to
these tools and tabulate resulting reductions in circuit size.
Gate counts are plotted on alog-log scale where polyno-
mial functions tend to straight lines and non-linear trends
are indicative of exponential asymptotic behavior.

3.1 Parity Testing

Determining the parity ofn input bits is a fairly simplis-
tic problem — a circuit comprised ofn−1 XOR gates can
solve it. Surprisingly, neither Espresso nor SIS were able to
reduce such circuits at all. However, BDS found the solu-
tion usingn−1 XOR gates.

3.2 Addition

Adders of varying sizes are common in many applications,
so implementing them in small circuits is a practical task.

Small and simple addition circuits are well-known.
Ripple-carry adders add twon-bit integers inΘ(n) time

1A simple induction argument proves that if all edges have Manhattan
length one, then the placement is uniquely determined. On the other hand,
none of the edges can be shorter.
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Figure 1: Gate counts for adders returned by Espresso and
SIS. The near-linear trend in thelog-logplot suggests near-
polynomial growth in circuit size.

and haveΘ(n) size [CLR90]. Carry-lookahead adders
takeΘ(lgn) time and requireΘ(nlgn) space [Hennessy96].
Both carry-skip and carry-select adders takeΘ(

√
n) time

and requireΘ(n) space [Hennessy96].

Espresso was able to reduce up to 7-bit adders, and
SIS could reduce up to 8-bit adders. Figure 1 illustrates
the growth of gate counts in addition circuits produced by
Espresso and SIS, on alog-logscale.

3.3 Multiplication

Automatic synthesis of multiplication circuits is more diffi-
cult than synthesis of circuits for parity-testing and addition.
However, this task is very significant in applications.

Simple and small multiplication circuits are well-known.
Array multipliers multiply twon-bit integers inΘ(n) time
and haveΘ(n2) size [CLR90]. Wallace-tree multipliers take
Θ(lgn) time and take upΘ(n2) space [CLR90].

In our experiments, Espresso was able to reduce up to
4-bit multipliers. Figure 2 shows the growth of the multi-
plier circuits produced by Espresso and SIS. Because there
are only 3 data points, it is difficult to make any judgments
on the trend of the size multiplication circuits produced by
Espresso. SIS, on the other hand, appears to produce mul-
tiplication circuits that are super-polynomially sized. BDS
could only complete the trivial 2-bit multiplication test.

The fact that automatic synthesis of multication circuits
defies many synthesis tools is well-known. As multiplica-
tion circuits have been extensively studied, many commer-
cial tools contain tables of multipliers with varying charac-
teristics and “instantiate” such circuits rather than synthe-
size them from scratch. However, such an approach may
fail for other difficult but less-studied synthesis problems.
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Figure 2: Sizes of multiplication circuits produced by
Espresso and SIS. The non-linear trend in thelog-log plot
suggests super-polynomial growth of circuit size for SIS.

4 Primality Testing
as a Problem in Logic Synthesis

On August 6, 2002, Manindra Agrawal, Neeraj Kayal and
Nitin Saxena presented a deterministic polynomial time al-
gorithm for primality testing [AKS02]. Despite being dis-
covered by undergraduate students and their advisor, this
result has been a major breakthrough in primality testing
and in a week made it to the New York Times [Robinson02].
While its immediate applications, e.g., in cryptography, cur-
rently appear insignificant, this result implicitly guarantees
the existence of polynomial-size circuits for primality test-
ing. Finding such circuits explicitly appears difficult, and
we propose to evaluate the scalability and sub-optimality of
modern logic synthesis tools by trying to synthesize these
circuits. We begin by estimating the asymptotic growth of
best-possible primality-testing circuits, based on results in
[AKS02].

4.1 Loose Upper Bounds

A well-known result in Complexity Theory [Sipser97] is
that if a deterministic single-tape Turing Machine runs in
time p(m), wherem is the size of the input to the ma-
chine, then there is an equivalent combinational circuit of
size(p(m))2. Thanks to the deterministic polynomial-time
algorithm in [AKS02], poly-sized primality testing circuits
must exist. The AKS algorithm runs inO(n12∗poly(logn))
time onn-bit integers [AKS02]. This result assumes a RAM
architecture which is appropriate for computers but not Tur-
ing Machines. To get an upper bound on the size of the
combinational circuits in question, a time bound for Turing
Machines must be derived.

For a description of the AKS algorithm, see Appendix
B. The first two main sections of the AKS algorithm use

a constant number of temporary integers of size at mostn
bits. Thus these sections of the algorithm can be performed
by a multiple-tape Turing Machine in the same amount of
asymptotic time as the RAM machine.

Single-tape Turing Machines can simulate multiple-tape
Turing Machines and, in fact, have the same computational
power [Sipser97]. In one of the simulation techniques,
the single-tape machine combines all the data from the
multiple-tape machine onto its tape with special markers for
the head positions of the multiple-tape machine. For every
step of the multiple-tape machine, the single-tape machine
must scan its entire tape and thus incurs a time penalty pro-
portional to the overall amount of data. Since the amount
of data on all of the tapes is proportional ton, the first part
of the algorithm will takeO(n4) time on a Turing Machine
and the second part will takeO(n10∗poly(logn)) time.

The last part of the AKS algorithm takes the bulk of the
time and uses much more memory than the two previous
parts of the algorithm. The last part of the algorithm con-
sists of a loop that cyclesO(nr

1
2 ) times. In each cycle of

the loop, a polynomial of degree less thanr is raised to
the power of the input integer. Using the repeated squar-
ing method there areO(n) polynomial multiplications per
polynomial exponentiation. Using the “grade school” poly-
nomial multiplication algorithm, one multiplication can be
done usingO(r2) integer multiplications and additions ofn-
bit integers. Multiplication ofn-bit integers can be done in
O(n2) time and additions can be done inO(n) time. Using
these naive methods, the last part of the AKS algorithm will
takeO(n4r

5
2 ) time. These naive techniques can be imple-

mented on a multiple-tape Turing Machine with a constant
number of tapes. Converting to a single-tape machine, the
scanning penalty for each step of the multiple-tape machine
is O(nr) since that is the amount of memory needed to store
the polynomials. Thus the final time for a single-tape ma-
chine comes down toO(n5r

7
2 ). In [AKS02] an upper bound

of O(n6) was proven forr, so an upper bound for the last
part of the AKS algorithm (and thus the entire algorithm)
on a single-tape Turing Machine isO(n26). Thus an up-
per bound on circuit size isO(n52). If the Sophie Germain
Conjecture [AKS02] is true, the AKS time bound reduces
dramatically toO(n12) and the circuit size bound toO(n24).

4.2 Empirical Results

In this series of tests, each tool reads a truth-table for ann-
bit primality tester, i.e., a complete list ofn-bit primes, and
is asked to return a smallest possible circuit implementa-
tion. The input is exponential as the number ofn-bit primes

is Θ
(

2n

n

)
, and thus automatically producing polynomial-

sized primality tester circuits requires non-trivial hardware
resources. We used workstations with 2Gb of RAM and
2.0GHz Pentium4-Xeon processors.
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Figure 3: Sizes of circuits for primality testing returned by (a) Espresso, and (b) SIS. The “primes” line represents
exponentially growing input circuits which implement the primality-testing truth table. Non-linear trends for Espresso
and SIS in theselog-logplots suggest exponential growth of circuit sizes.

Figure 3 (a) illustrates the performance of Espresso. We
first plot, on alog-log scale, the number ofn-bit primes
againstn, which is directly related to the size of the in-
put circuit given to Espresso. We also plot the size of the
circuits returned by Espresso for up to 19-bit primes (it
failed on a 20-bit primality tester). Figure 3 (a) suggests
that the size of the circuits produced by Espresso grows
super-polynomially. This leaves at least least two possi-
bilities: (i) two-level minimization is not powerful enough
for primality testing, or (ii) the circuits will eventually be-
come polynomially-sized for input sizes much greater than
19 bits. In the first case, one might try tools for multi-level
logic optimization.

Unfortunately, SIS was only able to minimize up to 20-
bit primality testing circuits. We ran SIS with commands
full simplify and scriptrugged and plot the best
result achieved in Figure 3 (b). These empirical data suggest
that SIS gives about the same results as Espresso, so the
original possibilities still stand. Finally, we tried a more
recent package — BDS.

Unfortunately, as Figure 4 shows, BDS is only able to
minimize primality testing circuits with up to 7-bits input.
The circuits produced by BDS are no better than those pro-
duced by Espresso and SIS.

5 Conclusions and Further Work

The main result of our work is the identification of a
somewhat extreme circuit synthesis task for which the best
known circuits (including those produced by existing tools)
appear exponentially sub-optimal. While the synthesis of
adders and multipliers is known as a difficult problem, pri-
mality testing appears even harder because good primality
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Figure 4: Sizes of circuits for primality testing returned by
BDS. Primes represents the exponentially growing circuit
size given to BDS. The non-linear trend for BDS in this
log-logplot suggests exponential growth of circuit size.

testers are unknown, while good adders and multipliers can
be found in textbooks. In fact, new experimental synthe-
sis tools not evaluated in our paper, e.g., M31, manage to
automatically find good adders and multipliers.

We hope that our work will generate further research and
lead to improvements in synthesis software and the theory
of logic circuits. Further work beyond primality-testing in-
cludes scalability studies based on doubling constructions
in the spirit of [HagenHK95]. For example, one can join by
anAND-gate two copies of the same circuit applied to dis-
joint sets of inputs, and this will produce an upper bound for
optimal circuits implementing the new function with twice
the inputs.



Much more can be done along the lines of primality test-
ing. From the Espresso results, it appears that two-level
logic minimization is not a powerful enough technique to
find the polynomially sized circuits that are guaranteed to
exist. Otherwise, our empirical data are somewhat incon-
clusive — with only 19 datapoints, it is difficult to argue
about polynomials of degree 24 or more. Indeed, a rough
upper bound on circuit size isO(n52), and 54 or more data
points would be needed. However, the existing 19-20 dat-
apoints seem to suggest exponential growth rather than a
sophisticated polynomial. At this point, it is still worth-
while to try various logic minimization software to collect
more datapoints. Scalability may be improved by special-
ized synthesis methods and better input encoding.

We only analyzed fairly simple primality-testing algo-
rithms because they can be easily implemented on a Turing
Machine. Using Fast Fourier multiplication would be far
more complicated, but could improve upper bounds.

When converting Turing Machines to combinational cir-
cuits, a much tighter bound on circuit size is available if
the Turing Machine isoblivious. Implementing AKS on
an oblivious machine may lead to better overall bounds for
combinational primality testers. Finally, one should track
on-going improvements over the original AKS algorithms.
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A Sub-optimality in Physical Design

Construction of realistic irregular graphs with “built-in” op-
timal placements is credited to Boese in [HagenHK95, Sec-
tion 1]:

Given a netlist hypergraphGH = (V,E) and an
array of |V| placement slots, the idea is to con-
struct a new hypergraphG′

H which optimally as-
signs terminals of each hyperedge onto a number
of contiguous slots equal to the hyperedge size.
The resultingG′

H can be “difficult” to distinguish
from GH , yet the optimum placement (Manhattan
wirelength) ofG′

H is known.



Wirelength = 184

Figure 5: An optimally placed 10× 10 grid-graph (n× n)
with 104 vertices (n2 + 4) and 184 edges (2n2− 2n+ 4).
The four vertices at the corners are fixed.

As in the n× n grid example, every hyperedge inde-
pendently achieves the smallest possible wirelength, there-
fore the placement is optimal. However, multiple opti-
mal placements may now exist. Specific “Placement Ex-
amples with Known Optima” (PEKO) have been created
along these lines recently [ChangCX03] and match the net-
degree distribution of well-known ISPD 98 circuit bench-
marks released by IBM. The PEKO benchmarks, as well
as grids can be downloaded through the GSRC Bookshelf
[BOOKSHELF]. None of existing placers produce opti-
mal solutions on PEKO benchmarks — the sub-optimality
ratio ranges approximately from 1.4 to 2.0. Several plac-
ers are able to place small grids optimally, but not larger
grids [AdyaEtAl03]. Moreover, stochastic search algo-
rithms, such as Simulated Annealing, have difficulties find-
ing unique optimal placements of grids, and this may also
apply to regular datapath-like circuits.

The notion of scalability is studied in particular detail in
[HagenHK95], where the authors argue thatknowing opti-
mal costs is not necessary to evaluate how well a heuristic
scales in terms of solution quality. They propose a con-
struction in which multiple copies of a netlist are connected
in such a way that the optimal wirelength or the optimal
cut of the new netlist grow linearly with the number of ver-
tices. For a given heuristic, one then tabulates the rate of
growth of solution costs. The asymptotic sub-optimality of
the heuristic is measured by how super-linear that rate is.

The authors of [CongRX03] propose benchmarks for hy-
pergraph partitioning with built-in upper bounds rather than
known optimal costs. Difficult global routing instances with
known good, but not necessarily optimal, solutions have
been proposed in [AloulRMS03].

Figure 6: The AKS algorithm (pseudocode from [AKS02]).

B The AKS Algorithm

The AKS algorithm is based on the following theorem for
prime numbers [AKS02]:

Theorem. Suppose that a is coprime to p. Then p is prime
if and only if

(x−a)p ≡ (xp−a)(modp)

Testing this identity explicitly takes time linear inp since
there arep+ 1 coefficients binomial on the left hand side.
Since the magnitude ofp is exponential in the number of
bits, this explicit approach is infeasible. Instead, the AKS
algorithm evaluates the identity modulo a polynomial of the
form xr −1. The algorithm first chooses a “suitable” value
for r and then repeatedly evaluates the following condition
for a “small” number ofa’s [AKS02]:

(x−a)p ≡ (xp−a)(modxr −1, p)

We reproduce the original pseudocode for the AKS algo-
rithm [AKS02] in Figure 6. It shows how a suitable value
for r is chosen and which values ofa are tested. Detailed
correctness proofs and complexity analyses can be found in
[AKS02].


