Scalable Simplification of Reversible Circuits :

Vivek V. Shende, Aditya K. Prasad, Ketan N. Patel, Igor L. Markov and John P. Hayes
Department of EECS, University of Michigan, 1301 Beal Ave., Ann Arbor, Ml 48109-2122

{vshende,akprasad,knpatel,imarkov,jhayes }@eecs.umich.edu

ABSTRACT

Reversible logic circuit synthesis has applications in various mod-
ern computational problems, low power design, and quantum circuit
synthesis. Several algorithms for synthesis and simplification of re-
versible logic have been proposed recently; however, they tend to be
infeasible for circuits of more than a handful of inputs. In our work,
we examine scalable methods to reduce the gate count of a given re-
versible circuit. Theoretical considerations we take up suggest that
local optimization- that is, the process of picking sub-optimal sub-
circuits, and replacing them with smaller counterparts — may be a
fruitful approach. In practice, our methods work well on circuits
with up to 30 inputs, and find reductions in gate count as large as
35% in randomly generated circuits. We conclude with an example
of a circuit for which local optimization fails, and further directions
for research.

1. INTRODUCTION

Many modern computational problems are inherently reversible
in nature, meaning that information present in the input must be Figure 1. Animage of a reversible CNT-circuit implemented in
conserved by the computation and be recoverable from the output. CMOS by De Vos et al. This particular circuit uses 144 transis-
Some fields in which such problems arise include cryptography, dig- tors and no internal power supplies.

ital signal processing, and communications [8]. Some previous work has centered on generating circuits consist-
In addition, non-reversible circuits necessarily dissipate heat to ing entirely of CNT gates. Toffoli [13] showed that the CNT gate
compensate for the loss of information they incur [1]. It has been |iprary is universal for the synthesis of reversible Boolean circuits.
shown that some reversible circuits can be made asymptotically energiis has been recently extended, and in particular it has been shown
lossless as their delay is allowed to grow arbitrarily large [15]. In ¢ 41| even permutations can be synthesized with no temporary
fact, De Vos et al. have bu_llt rever_S|bIe circuits of up to 384_r transis- storage lines, and that odd permutations require exactly one extra
tors, powered only py the input. Fllgure 1 shows one of their circuits line [12, 14]. Iwama et al. describe a simple but nontrivial set of
as seen by a scanning electron microscope [3]. _local transformation rules for CNT-circuits [6]. Their work focuses
Moreover, all quantum circuits are, by their nature, reversible. o transforming circuits into a canonical form rather than with re-
Purely quantum gates are necessary for the exponential speed-upy,cing circuit size, but indicate that the theory of reversible circuits
enjoyed by many quantum algorithms, but generating classical re- o4 penefit from a more concrete heuristic for the latter.
versible circuits is an important step toward quantum circuit synthe- gpande et al. describe a method for synthesizing optimal re-
sis. Many quantum computational applications call for large classi- \ggjple circuits [12], which significantly outperforms the exhaus-

cal reversible’sub-circuits: in particular, the textbook implementa- e search methods used by Kerntopf to tabulate statistics for small
tion of Grover's quantum search algorithm uses many CNT (CNOT, reyersible circuits [7]. Still, even the improved algorithm was never

NOT, and TOFFOLI) gates [10]. called upon to synthesize circuits on more than three wires, and was

*This work was partially supported by the Undergraduate Summer never forced to output a circuit of more than twelve gates. It is evi-
Research Program at the University of Michigan and by the DARPA dent that circuits on many more wires, containing many more gates,
QuIST program. The views and conclusions contained herein are could not be generated in a reasonable amount of time by the algo-

those of the authors and should not be interpreted as necessarily reprithm presented there. They also suggest a heuristic which scales
resenting official policies or endorsements, either expressed or im- " uch better. but may yield very sub-optimal circuits

glru?ﬁéﬁ.tgfegg\tgp:%éﬁt\./anced Research Projects Agency (DARPA) The present work offers fast simplification of CNT-circuits rather

than optimal methods that may not scale. We are interested in re-
Permission to make digital or hard copies of all or part of this work for ~ducing the number of gates in a given circuit without increasing the
personal or classroom use is granted without fee provided that copies are number of bits on which the circuit operates — meaning that we al-
not made or distributed for profit or commercial advantage and that copies low no temporary storage, or constant inputs. This is motivated in

bear this notice and the full citation on the first page. To copy otherwise, to part by the fact that in quantum computing applications, qubits are
republish, to post on servers or to redistribute to lists, requires prior specific relatively expensive and gates are relatively cheap

permission and/or a fee. ’
Copyright 2003 ACM 0-89791-88-6/97/05%$5.00.

G [4]. The® symbols represent inverters and #hsymbols represent
= f = — controls. A vertical line connecting a control to an inverter means
& & & m x that the inverter is only applied if the wire on which the control is

set carries a 1 signal. The circuit in Figure 2(a) computes the same

(@) (b) function as a single C gate. Such pairs of equivalent circuits are
useful in optimization: we can replace the larger with the smaller to
Figure 2: Reversible circuit equivalences. effect a circuit reduction.

2.2 Sub-circuits

We use a greedy local search to find improvements that can be Finding sub-circuits to reduce is central to the present work. We
achieved by changing a few gates at a time while preserving the jntuitively understand a sub-circuit to be a collection of gates with
circuit function. Reversible circuits are partiCUlarly amenable to the property that we may “draw a box” around it and treat it as the
such optimization, which falls roughly into the paradigm of dynamic inner workings of some larger gate. To make this precise, we con-
programming: large tables of circuit reduction rules that are pre- sjder the topological ordering of the gates in a circuit. For gaté$
computed by optimal methods [12] and can be stored in files. With in a circuitC, we sayH >¢ G (or equivalentlyG <¢ H) if there is
appropriate data structures, optimization can be performed in linear some non-trivial path frori to G in the graph representir@ The
time and is very fast in practice. It can be analogized wéhphole >¢ relation is a strict partial order: from the definition of a path,
optimizationin compilers [9], where only several lines of code are it is clear thatF >c G, andG >c H imply F >c H. In addition,
optimized at a time. since we require nontrivial paths, no gate follows itself and we can-

The remainder of the paper is structured as follows. The neces-not have bothG >c H andH >¢ G: otherwise, there would be a
sary background is given in Section 2. Section 3 motivates the use of|00p in the graph, which is required to be acyclic. B is not a
local optimization to reduce reversible circuits. Section 4 discusses total order: for example, in a two-wire circuit with one NOT gate on
the generation of circuit libraries for use in the reduction procedure, ggch wire, neither follows the other. Finally, we abbreviageto >
and Section 5 discusses the reduction procedure itself. We exam-t it is clear which circuit we are talking about.
ine empirical results in Section 6 and some theoretical limitations to \we say that a subs&of the gates in a circult is replaceable if,
local optimization in Section 7. Finally, conclusions and on-going for all gatesG € C, and forallgate§, He SH>G>F — GeS

work are discussed in Section 8. Given a replaceable subset of gates, their order relations, and which
wires they operate on, we may recover all the details about how they
2. BACKGROUND are interconnected in the original circuit. We will henceforth under-

We are interested in reversible Boolean circuits. The condition for Stand that all gates “know” which wires they operate on; therefore,
a (combinational) circuit to be reversible amounts to requiring each & Sub-circuit is given by a replaceable subset of gates together with
gate to be reversible, and requiring that no fan-out or feedback occurtn€ir order properties. We generally do not distinguish a sub-circuit
in the circuit. A reversible gate must compute a bijective function, T0mM the underlying replaceable subset, and in fact denote them with
and must therefore have the same number of inputs as outputs: thidh€ Same letterS= (S, >c |s). Finally, a sub-circuit can be thought
number is its width. of as a circuit in its own right.

In other words: if we were to draw the circuit as a graph, with 2.3 Circuit Encoding
circuits as vertices, and directed edges representing wires (we allow]
more than one edge to connect two vertices), the graph is required Itis not at all e_/ldent_ wh_alt sorts of data structures should be used
to be acyclic, and every vertex must have as many edges entering 540 encode reversible circuits. Ideally,_we_want a data structure _that
leaving. It follows that for any cross-section of the circuit, adding the CaPtures the order properties of the circuit to be encoded. That is to
number of wires cut to the widths of the gates cut yields a constant; S&. We would like to encode a circltin a data structur®c in
its width. Clearly this is the same as the number of inputs to the SUCh @ way that the representation of the dateccurs “after” the
circuit, or number of outputs. representation of a gateiff G> H. g . .

Because the number of wires entering a gate is the same as the Ve can satisfy the “if” part of the condition by using an array like
number of wires leaving, we may think of wires not as stretching data-structure, for example, an Svector . It suffices to proceed
merely from one gate to another, but going throughout the whole Tom the inputs of a circuit to the outputs, adding gates to the end
circuit, with gates appearing on them from time to time. Alterna- ©Of the array and removing them from the beginning of the circuit.
tively, we can think of bits in a register, on which we can perform When two gates are both situated at the inputs, we choose arbitrarily
reversible operations, but cannot physically move anywhere — this which to encode first. This procedure preserves the ordering: it is

formulation corresponds to the quantum computing context. the text-book proof that a finite partially ordered set can be extended
to a total order by depth-first search [2].

2.1 The CNT Gate Library However, the result of the arbitrary choices made in the encoding
The gates used in our reversible circuits are members of a |argerprocedure is that we cannot possibly ensure that the representation

family introduced by Toffoli [13]. Thek-Controlled NOT gate, or of G occurs after the representationtdfonly if G > H. In fact, it is
k-CNOT, is a widthk+1 gate. It leaves the fir&tinputs unchanged clear even from the example of the two-wire circuit with a NOT gate
and invérts the last iff all others are 1. The first thkek@NOT gates’ on each wire that we cannot satisfy this condition in general: neither

have special names. The 0-CNOT is just an inverter, or NOT gate of these gates fc_)llows the_ other_, but one must_ come firstin t.he array.
(N). The 1-CNOT is just called a CNOT gate (C), and the 2-CNOT We are 'Ieft with a ch0|ge: either reject using the array in favor
is called a TOFFOLI gate (T). These three gates comprise the CNT of somethlrjg more com_pllcated, or take pains to ensure that the ar-
library, and a reversible circuit made up of only these gates is called Pitrary choice of encoding order does not affect the result of our
a CNT-circuit. Our circuits will all be CNT-circuits: the CNT gate ~ &/9orithms. In this paper, we take the second option: the price is that
library is universal [13], and these particular gates appear often in locating a_II SL_Jb-C|rcu|ts is a n_on_tr|V|aI task. However, the following
the quantum computing context [10]. characterization of sub-circuits is useful.

We draw CNT-circuits as arrays of horizontal lines representing
wires, in which gates are represented by vertically-oriented symbols

PROPOSITION 1. A subset S of a circuit C is a sub-circuit if and
only if there is an encoding &such that the gates from S form a
contiguous block in g
Proof: The “if” part of the proposition is obvious. So suppdSes
a sub-circuit ofC. We claim that the sél, of gates inC which are
neither inS nor follow any gate irS, forms a sub-circuit. Suppose
a,be T, anda < x < b for some gatex. If x € S, we haveb > x,
which is a contradiction, and if for some gae S, we havex > s,
thenb > x> s = b > s, which is again a contradiction. L&be
the set of gates that follow some gateSnbut are not inS; this is
similarly a sub-circuit. We may consid&; S T as circuits in their
own right, and encode them in arralyg, Es, Ey. We claim that the
concatenatiofec = ETEgER is a valid encoding fo€.

To show this, we need to show that the order propertieS afe
preserved irfEc, and in fact it suffices to show the following claims:
(1) No gate inSfollows any gate ifT, (2) No gate inR follows any
gate inS, and (3) No gate ifR follows any gate ifT. Claims (1) and
(2) are immediate from the definitions. Suppose some matR is
followed by some gatec T. By definition, there exists songes S
such that > s, hence we have >t > s, andr follows some gate in
S, which is a contradiction. 0

2.4 The Random Circuit Model

Reversible computation has yet to achieve sufficient popularity for
benchmarking circuits to be publicly available. Moreover, we know
of no tools to take a given permutation and return a reversible circuit
computing it, although some methods of doing this have been sug-
gested in the literature [12]. Therefore, in the interest of testing our
methods, we generate random CNT-circuits, to simulate a simple bu
inefficient synthesis algorithm. The random circuit generating pro-

cedure constructs circuits sequentially by first selecting a gate type

(C, N, or T) based on some probability distributiopc, pn, PT),
and selecting wires for the gate inputs at random. The wires avail-

able for the next gate are the same as the wires for the previous, save

Let px be the probability that a given gate in the circuit is of type
K. For an arbitrary K-gatd in the circuit, letPx be the probability
that a K-gateB we can cancel witth appears before an obstruction
to cancellation. In generakx is a function of the probability dis-
tribution of the gates in the circuit. ClearB(redk) < pkPx, but
this bound is not sharp: the first K-gate may have been eliminated
in an earlier reduction. To eliminate this possibility, we ensure that
the number of gates which precede the given gate and could cancel it
is even. This probability is approximated by the following formula,
which is precise in the limit of long circuits.

I
1+Pk

We now calculate this for the specific case of a CNT circuit, and
for K=NOT, CNOT, and TOFFOLI. Lepyn, pc and pr denote the
respective relative probabilities of these gates. A NOT gate may
cancel with another NOT gate on the same wire so long as no gate
between them is controlled on their wire. An inverter we may cancel
appears with the same probability as a CNOT that obstructs cancel-
lation, but TOFFOLI gates have two controls, so it is twice as likely
that a TOFFOLI gate obstructs an inverter cancellation. Thus,

PN
i PN+ Pc+2-pr
Similar calculations can be made for CNOT and TOFFOLI gates.
One important difference is that for the NOT case we only had to
consider the effect of a control occurring between two NOT gates;
for the CNOT and TOFFOLI cases we also need to consider the

P(redk) ~ pxPx (1~ Pc)(1+PZ +P¢---)

teffect of a target occurring between the gates’ controls.

Pc
pn(k—1) + pc(2k—2) + pr(3k—5)

pT
P (K2 — 3K+ 2) + po HELIt10 | b (2k2 — 8k + 9)

Pc

P.l_

that those wires which the previous gate took as inputs are replacedFor equiprobable gate typepd = pn = pr = 1/3), we find that

by wires corresponding to the outputs of the previous gate. For us,
Pc=PN=Pr = 3.

We point out that the random circuit model should not be under-
stood as representing circuits which occur in practice. Most func-
tions require circuits of lengt®(n2"/log(n)), for n the number of
inputs [12]. It follows that most random circuits of this length will
not be reducible to circuits of a reasonable length. Circuits used in
practice, however, tend to be reducible to a non-exponential size.
Therefore, while we use the random circuit model to give some pre-
liminary data as to what sorts of reductions one can expect, the ulti-
mate test of these methods needs to be against “real” circuits.

3. THEORETICAL MOTIVATION

Two consecutive inverters on the same wire can be canceled out.

P(redy) =~ 1/15
P(rec) ~ 1/(18-—21)
P(redr) ~ 2/(27k*—9%+ 102

In contrast with the NOT case, the effectiveness of CNOT and TOF-
FOLI cancellations decreaseslasicreases. Intuitively this makes
sense. Taking the example of the CNOT reduction, there is only one
CNOT gate that can form a pair with another while there &re 3
CNOT gates that can eliminate the possibility of a pair, and it is
correspondingly worse for TOFFOLI gates.

As two gates are eliminated each time we apply a reduction, the
expected percentage reduction from NOT cancellations alond 52
13.3%. Note that cancelling inverters out is a special case of local

Similarly, if two CNOT gates appear consecutively on a pair of optimization: we know that certain gate configurations are equiva-
wires, and use the same wire for a control, they may be canceledlent to an empty circuit, so we replace them as we find them. There
out, and the same is true of matching TOFFOLI gates. These are theare many more such reductions — but in general, we replace more
most elementary local reductions: clearly a single gate sub-circuit gates with less gates rather than two gates with none. To make bet-
cannot be replaced with anything shorter, and it turns out that two ter reductions, we pre-compute a library of optimal circuits, with
gates can never be replaced by one. Before working out algorithmswhich we replace any longer, equivalent circuits we find.

to deal with more complicated reduction schematics, let us deter-4. CIRCUIT LIBRARY GENERATION

mine how far cancellation alone can go. For the duration of this sec-
tion, we consider cancellations on a long random circuk wires. Our method for local optimization relies on our ability to deter-

We proceed through the circuit from inputs to outputs looking for mine whether or not a given circuit or sub-circuit is optimal — that

duplicate gates that we can eliminate. is, whether or not there is an equivalent circuit that employs fewer
Let K be an arbitrary gate type which cancels itself out, like NOT, gates. Any circuits or sub-circuits which are not optimal are called

CNOT, or TOFFOLI. We are interested in the percent reduction that sub-optimal. Any sub-circuit of an optimal circuit is optimal.

results from cancelling K-gates out. Because each cancellation re- One can check if a given circuitonnwires is optimal as follows:

moves 2 K-gates from the circuit, the percent reduction is twice the build a libraryL of all optimal circuits om wires, and check i€ €

probability, P(redk), that a given K-gate is the firstin a cancellation. L. In fact, L need only contain the optimal circuits smaller than

C: if any circuit in L computes the same function s thenC is
suboptimal, and if no circuit i computes the same function @n
thenC is optimal by definition. Running through all the circuits in
the library, determining the functions they compute, and comparing
each withC is time consuming. Instead, we store the library as an
STLhash _set of circuits, indexed by the (pre-computed) function
they compute. Two circuits can have the same index, but it suffices
to store only one optimal circuit for each function.

In short, we are interested in building circuit libraries contain-
ing one representative optimal circuit for each function that may be
computed ind or fewer gates om wires. We call such a library
an OCRL(d, n) (optimal circuit representative library). Observe that
the firstd — 1 gates of an optimal-gate circuit themselves form an
optimal sub-circuit. Therefore, to generate an OC®RD) from an
OCRL(d — 1,n), it suffices to iterate througld — 1)-gate circuits
from the OCRLd — 1,n), and add single gates to the end of each in
all possible ways. It now suffices to iterate through the resultant cir-
cuits, adding them to the OCRL iff they compute a function which
no circuit currently in the OCRL computes. This ensures that only
optimal circuits are added, and that only one optimal circuit comput-
ing a given function is added.

The approach described above was taken in [12]. The authors of
that paper were interested in the problem of synthesizing optimal re-
versible circuits, which they did using a depth-first search algorithm
accelerated by means of an OCRL. To illustrate their methods, they
built an OCRL(3,3), and proceeded to synthesize optimal circuits
of up to eight gates on three wires for each of the=840,320 re-
versible functions on three inputs. They claim that generating the

bool CAN _JOIN(subcirc S, circ C, gate g)
for each h from g to S.pivot
if 1(S.contains(h) or CAN
return false
return true

_SWAP(g,h))

list FIND _SUBCIRCS(gate PIVOT, circ C)
subcirc S« {PIVOT}
list L « {S}
i «<0

while (L[i]'= NIL)
S « L[
for each g not in S
if ON _SAMEWIRES(S,g)
if CAN _JOIN(S, C, g)
S~ S +g
else if TOTAL _WIRES(S,q)
if CAN _JOIN(S, C, g)
T—S+g
L.append(T)

< k

i — i+l

return L

Figure 3: Pseudo-code for sub-circuit enumeration.

OCRL(3, 3) takes a negligible amount of time, and that synthesizing .

the remaining functions takes 215 seconds.

Here, however, we are interested in optimal circuits on four wires
rather than three, for reasons that are clarified in Section 5. The
number of such functions i€*)!, which is greater than 20 trillion.
Memory constraints allow us to generate only up to approximately
40 million; in the interest of time and disk space, we choose to limit
ourselves to circuits of depth 6, of which there are approximately
26 million. The generation of the OCR&, 4) is fast; details are
listed in Table 3. Because our library contains only circuits of up
to six gates, we cannot always determine the optimality of a sub-
circuit with more than six gates. This is a tradeoff we have to deal
with because of memory constraints. In practice, however, we find
that most circuits are heavily populated with sub-circuits that can be
reduced to six or fewer gates.

Our ability to generate and store very many circuits depends on
a compact storage method we devised specifically for this purpose.
Each gate occupies just one byte using the following bit-packing
method. Because we only implement three gates, the gate’s type ca
be stored in two bits. Each of the gate’s operands can be represente
by two bits as well, since we are only operating on four wires. Since
no gate operates on more than three wires, the entire gate takes ju

ignored). Our representation of circuits for generation also packs
data efficiently. We store up to seven gates, along with the number
of gates — this takes eight bytes.

We also store the function the circuit computes. A reversible cir-
cuit onnwires permutes its™2possible input vectors. Therefore, on
four wires, we store the function as a permutation of 16 values. Each
value requires 4 bits, and as there are 16 of them, the whole function
is stored in a 64-bit variable of typdeng long int . We can
quickly hash these values by adding the high 32 bits to the low 32
bits times a prime number.

in only 16 bytes, which allows us to fit all 26 million or so depth-6
circuits in under half a gigabyte of memory. In [12], generating all
functions on three wires and saving them to disk took 3.5 seconds;
we require only 0.4 seconds. More importantly, their storage method
could not accommodate such large libraries on four wires.

5. CIRCUIT REDUCTION

Our goal is to reduce CNT circuits with many gates and wires. To
accomplish this, we traverse small sections of these circuits and op-
timize them sequentially. This approach is reminiscernpeé phole
optimization often employed by modern compilers, which simplifies
small sections of code at a time [9].

We are interested in replacing sub-circuits with smaller equivalent
circuits. But the number of sub-circuits of a given circuit is expo-
nential in the number of gates in the circuit; moreover, many of these
yield no fruitful reductions. Sub-circuits which are too short are of-
ten already optimal, whereas sub-circuits which are too long, while

rprobably sub-optimal, may not have an optimal realization small
8nough to be found in a pre-generated circuit library. Moreover,

our method of generating circuit libraries requires that we pick the
mber of wires in advance — that is, we need to choose the width of

u
eight bits (for NOT and CNOT gates, the excess operands are justgtLe sub-circuits we plan to examine.

We are now faced with the task of enumerating the sub-circuits
of a given fixed width that appear in a circdit given the encoded
circuit, Ec. Recall that sub-circuits are characterized by the property
that they are contiguous in some encoding arégy, Listing all
encoding array&¢ would take a long time. Instead we look at the
transformations by whiclEc may be altered without changing the
circuit it encodes, and enumerate sets of gates which can be made
contiguous by a sequence of such transformations.

PROPOSITION 2. If g,h share no wires and are consecutive gates
in an encoding array, g does not follow h, and h does not follow g.

In Table 3, we see that the time required to generate circuit li- We can swap them without changing the circuit represented by the

braries is nearly linear in the number of circuits: we generate about

200,000 circuits per second. This speed is in part attributable to the Given an encoding arra§, and apivotgate,p
compactness of our data storage. We store each circuit is described,| maximal widthk sub-circ,uits containingp‘ !

encoding array.

we can enumerate
which can be made

Il

Figure 4: The highlighted gates in the left-most circuit form a sub-circuit on the solid wires. We can make them contiguous, as is shown
in the middle circuit. This sub-circuit is suboptimal, and can be reduced, yielding the circuit on the right.

contiguous without changing the positionin the encoding array. can be reduced by the largest amount, and then proceed to the next
The algorithm proceeds as follows. Initializeas an empty list of pivot.
sub-circuits, and add tb the sub-circuitS; consisting ofp alone. We ran LocalA on random circuits with 5, 10, or 20 wires, and
We now traverse the sub-circulof L, beginning withS=§;. 250, 500, or 1000 gates. We found that the greatest reduction oc-
For a given sub-circuitS, with pivot p and right-most (in the en- curred on circuits with 5 wires. As the number of wires grows, this
coding) gatay,, we iterate through all gates frogn to the end of the reduction factor decreases considerably. However, even on 20 wires,
circuit. For each such gatg we check first if the total number of the program was able to reduce the gate count to 79.6% of its orig-
wires used by and bySexceeds the maximal width of sub-circuits inal value. The reductive efficiency was relatively constant as the
we are interested irk. If not, we check whether there are any gates initial gate count varied. Results are given in Table 1.

xin the encoding array betwegrandg which satisfyp < x < g but We made several modifications to this basic algorithm, both to
fail to be inS, otherwise we know thaB|J g forms a sub-circuit. If improve its reduction ability, and to decrease runtime. One alterna-
S already operates on all the wires whighaffects, then we add tive: instead of reducing sub-circuits after each pivot, traverse the
to Sand begin again with the gate to the rightgoflf not, we form entire circuit to find the most reducible sub-circuit, reduce it, and
a new sub-circuiS, consisting ofSandg, put it at the end of the continue. This variation took about 35 times longer than LocalA.
list of sub-circuits, and continue looking for gates to ad&t®nce Because it only made one reduction per pass through the circuit, it

we have finished looking between and the end of the sub-circuit, had to make very many passes before it could find no more. How-
we look between the leftmost gageand the beginning of the sub- ever, we found that it offered no reduction increase on average, and
circuit, and when this is finished, we move on to the next sub-circuit actually did worse in some cases. We tried the opposite: instead the

in the list. By the end, we have a list of sub-circuity,(each op- most reducible sub-circuit, search for the least. This took as long
erating on a different set of wires, all employifgas their pivot. without producing any benefits.
Pseudo-code is given in Figure 3. We did glean some interesting information from these versions,

Finally, note that in searching for sub-circuits, the only question however. For the greedy version, we found that the maximum re-
we ever ask of two gates is whether they can move past each other irduction almost always diminished with each pass. On circuits with
the encoding array. Originally, we were asking whether they could 5 wires and 1000 gates, the first pass through often found reductions
move past each other in the encoding array without changing the of up to 15 or 20 gates at a time. Within a few passes, however,
structure of the circuit represented. However, sometimes gates carit dropped below 10. On average, the algorithm made 100 passes
be moved past each other in the circuit itself without changing the through the circuit before it could not find any more reductions.
function being computed. In this case, we can also interchange them Based on the evidence gathered from the last two algorithms, we
in the encoding array. We use commutability rules from the literature tried the following: instead of searching through all of the sub-
[12, Corollary 26]. An example is given in Figure 4 circuits for a given pivot before reducing one, we immediately re-

No matter how many sub-circuits are found, we may, in general, duced the first one we could. We found that the great majority of
only optimize one of them. This happens because they may inter- pivots had no reducible sub-circuits; therefore, this improvement
sect in various ways, and after optimizing one, the others may no took away no ability in reduction. However, it produced nearly a
longer occur in the new circuit. In the instance that more than one 40% reduction in time.
of the sub-circuits we found are optimizable, we need a heuristic to The next improvement we found was even more significant. In
decide which of these circuits we should optimize. We tried several LocalA, we pick a pivot and examine the circuit from end to end to
different choices. Results appear in Section 6. find sub-circuit. This takes time at least proportional to the circuit

size. We repeat this process for all gates in the circuit, so LocalA
6. EMPIRICAL RESULTS runs inQ(nZ)ptime, whrt)aren is the num%er of gates. In Table 1, we

Our description of the algorithm in Section 5 leaves many parame- see the impact this has on runtime. However, we know intuitively
ters unspecified, and we would like to optimize them for both speed that the algorithm should not be worse than linear: we could run it
and performance by running empirical tests. Moreover, we would
like to know what effect various factors such as circuit size, circuit
library size, and limited gate libraries have on the efficacy of our
algorithm. In this section, we investigate these questions.

Runtime of Local A, sec| Runtime of Local B, sec

#gates| S5wrs | 10wrs | 20wrs | 5wrs | 10 wrs | 20 wrs

; i 1000 3 20 106 17 3.8 10.1

6.1 Algorithmic Improvements 500 1 9 | sl 18l ‘35

The discussion in Section 5 left unspecified various implementa- 250 0 4 21 2 5 1.1
tion details. These include: how far from the pivot gate we search [%Rdx | 352] 25.6] 23.0] 37.3] 256] 21.0]

for sub-circuits, how many sub-circuits we collect in the list before

trying to optimize them, and how we choose which sub-circuit to

optimize when we are ready to do so. Here, we implement and com- Table 1: Runtimes and performance of our algorithms. Al
pare several different algorithms. Our first method, LocalA, is as tests performed on a 2GHz Pentium-4 Xeon workstation. Per-
follows. For each pivot, look for sub-circuits all the way from one formance is measured in percent reductive efficiencyl00times
end of the circuit to the other, collect them, reduce whichever one the change in circuit size, divided by the original circuit size.

on the first 100 gates, and repeat for the remaining sets of 100 gates, Circuit Libraries of Different Depths

L - . Depth 0 1 2 3 4 5 6
and should obtain similar results in linear time. %Rdx 5wis | 124 183 264308 335 3551 370

An empirical observation shows how to make this possible. Al- | %Rdx, 10wrs| 116 | 15.7] 21.9| 242] 25.0] 259 25.9
though gates which constitute a given sub-circuit may theoretically | # Circuits 1] 29 605 10K [158K | 2.IM | 26M
appear arbitrarily far away from each other in an encoding array, [Time (sec) 0 0 0 0 1 10 | 152
this is unlikely to happen in practice. Empirically, none of the sub- o)
circuits on 5 to 20 wires ever extend more than 50 gates from the Table 3: Characteristics of an OCRL(n,4) for various n: reduc-
pivot. In fact, the overwhelming majority stay within 30 gates. We tion efficiency on 5, 10 wires, number of circuits in the OCRL,
adjusted the loop accordingly: whereas before we examined alll gates*"‘nOI build-time.

from the pivot to both ends, we now examine only those that are up has only one gate type: the first contains only TOFFOLI gates,
to 30 gates away from it. As this yields significant savings in runtime ihe second only CNOTSs, the third only TOFFOLIs, and the fourth
while sacrificing little reductive efficiency, we use this modification opy inverters. These sub-circuits contain up @3- n)(3n—7),

in all later variants. n?/logn, 3(2n+1)(3n—7), andn gates, respectively [12, 11]. We

We tested the new algorithm (LocalB) on many circuits, of the oy examine how well local optimization works on circuits com-
same size we tested LocalA with. The improvements in runtime prised only of TOFFOLI, or only of CNOT gates.

over _LocaIA were significant. LocalB was over 1_0 times faster for ~ Fjrst, we build an optimal circuit library specific to the problem,
20 wires and 1000 gates. More results are given in Table 1. that is, consisting of only circuits that only use the gate in question.
6.2 Reducti Vi Ci it Si The sub-circuit width we fix at 4 wires. For CNOT gates, we can

: e IUC lon versus Lircuit size o) store the full OCRL(9,4), capturing all 20160 functions computable

To determine the performance of LocalB on circuits of different \ith CNOT gates on 4 wires. For TOFFOLI gates, we store 20 mil-
widths, we tried varying the wire count from 5 wires to 30 wires. jion circuits, which turns out to be halfway between the OCRL(9,4)
We ran it with circuits of varying sizes again, and averaged their ang the OCRL(10,4). The first of these libraries took less than a
reduction amounts. The times listed in Table 2 are for circuits of second to build, while the second took approximately 5 minutes.
250 gates. As shown by the table, the reduction ability of the al- Experiments were performed on a circuit on 5 wires and containing
gorithm becomes worse as circuit width increases, leveling to about 1ggg gates. On average, 25.6% of the CNOT only circuit remained,
80% with 30 wires. Runtimes remain fairly low. and 88.6% of TOFFOLI gates remained.

. . . We can compute how much of the reduction was likely due to gate

6.3 Reduction Versus L|brary Size cancellations by the methods in Section 3. For a CNOT only circuit,

To test the efficacy of our circuit library, we created several more we havepy = pr = 0 andpc = 1, henceP(red:) = Tl_1 We ex-
optimal libraries to test it against. We generated libraries with max- pect CNOT cancellations to remowg?; = 22.2% of the original
imum depths ranging from 0 gates — the identity function alone — Up gates. Therefore, 52% of the CNOT gates were removed by more
to a depth of € gates — the ordinary size of our circuit library. Table compjicated reductions. On the other hand, we would expect that
3 shows the sizes of the various gate libraries we tested. A depth of 5 ayerage of 10% of the original gates in a random TOFFOLI only

6 was the greatest we could store in memory. _ circuit would cancel, so only.4% of the original TOFFOLI gates
The runtime differences between different library sizes were neg- \yere removed by more complicated reductions.

ligible for both 5 and 10 wires. What's interesting is that the reduc-

tion performance degradation is very slight from depth 6 to depth 5,

despite the fact that there are more than 10 times as many circuits of7' LIM I_TATIONS o o)
depth 6 as depth 5. A further look into the size distributions made ~ Our empirical results for random circuits show that significant im-
the reason for this evident. On 10 wires, more than 99% of the sub- Provements are possible using local optimizations, however there are

circuits found had gate counts less than 7, and 98% had fewer thansome theoretical limitations to this approach. We know that any irre-
6. A depth 6 library, therefore, is sufficient for the large majority of ducible CNT-circuit can have no reducible sub-circuits. We can also

sub-circuits we find. show that the converse is not true in the following strong sense.

The data for depth-0 circuits is also interesting. Because the only
function computable with O gates is the identity function, gate can-
cellations account for almost all reductions which may be achieved
with this library, and empirically, the vast majority of these were in- A - LI .
verter cancellations. Thz program was able to reduce the gate coun tht the c!rcu!t shown in the shaded box in Figure 5 vith d
by about 12% in both cases, which almost matches the expected re- his CNT-circuit hask gates_and d_eptd. It computes a function
duction value of 18% computed in Section 3. It falls short for two that changes the values biwires, since each wire has exactly one

reasons: the thirty gate bound on the search distance from the pivogNOT that acts on it. Since the circuit has omlygates, it must

PROPOSITION 3. For any d there is a reducible CNT-circuit with
depth> d and no reducible proper sub-circuits.
Proof: The proof is by construction. For a givehwe first con-

gate costs up to 2% of reductions, as can be seen in Table 1, and th e irreducible; otherwise there would exist a CNT-circuit that used
value of 133% applied to arbitrariI;/ large circuits. ' ewer thark gates to modify the values &fwires, which is not pos-

sible since each CNT-gate has only one target. Because the circuit is

6.4 Circuits with Restricted Libraries irreducible, it follows that its sub-circuits must also be irreducible.

InT2. Th 33 tructi thesi dure is given t Now we repeat the pattern in our construction, adding one gate at
n[12, Theorem -] a consiruc Ve Synthesis procecure Is givento time, as shown on Figure 5, and stopping once we have a reducible
decompose an arbitrary permutation into a CNT-circuit. In fact, the

ltant circuit breaks d into f b-Gircuit h of which circuit. This circuit can have no reducible sub-circuits, because of
resultant circurt breaks down Into four sub-circuits, €ach ot which y, o cyclic structure of the construction. In particular, suppose the

sub-circuit formed between gate numbeérand j inclusively was

Input Circuits of Different Widths . . . L
Fwires 5p 7T 101 1517 20 251 30 reducible, then this would imply that the sub-circuit formed by the
%RAX 375 204 | 2490 | 220 21.7| 205 | 195 first j —i + 1 gates was also reducible since the two sub-circulits are
Time, sec| .2 4 6| 10| 15| 19| 3.1 identical up to a relabeling of the inputs. However, this would be

_ o _ _ a contradiction since we stopped adding gates as soon as we had a
Table 2: LocalB applied to circuits of various widths. reducible circuit. Therefore, we have constructed a reducible circuit

Xl i=2

§ X, ©X,
X2 — T ®

: X, ®X,® X, :
X3) T E F
X, b
Xy-1 X

©X;

Xk an ‘ i=1

Figure 5: Example showing that for any d there is a reducible
CNT-circuit with depth > d and no sub-optimal proper sub-
circuits.

with depth> d, that has no reducible proper sub-circuits. 0

One consequence of this proposition is that no matter how large a
library of local reducibility relations we have, there are circuits that

ally, our ability to find sub-circuits depends on our knowledge of
commutability rules: as it is, we only know one [12, Corollary 26].
It would be advantageous to know more. Moreover, given that com-
mutability seems central to finding sub-circuits, perhaps we should
(1) extend our gate library to include more commutable gates, and
(2) in the optimal circuit library, prefer more commutable sub-circuits.

Non-local optimizations. Two consecutive CNOT gates occur-
ring on the same wires with the same orientation cancel out, but if
they occur with opposing orientations, they may instead be replaced
by a single CNOT and a wire swap. Wire swaps may all be pushed
to the end of the circuit; doing so introduces no new gates. More-
over, because any permutationrofvires may be accomplished in
n— 1 transpositions, at moat— 1 swaps are required in all, each of
which cost 3 CNOT gates. Novel techniques for CNOT-circuit syn-
thesis can be applied at this point for further potential optimizations
[11]. The methods of Section 3 indicate that the reduction achieved
using this technique will be comparable to that offered by canceling
CNOT gates. We note that this is not a local optimization: it collects
CNOT gates from all over the circuit, groups them into wire swaps,
and moves the wire swaps to the end of the circuit, where they can
be cancelled. There may be similar groupings of larger numbers of

cannot be reduced using our local reductions. However, we note thatgates that also allow for non-local optimization.

the above example is only guaranteed to ksel gates, wherd

is the number of wires. In fact, because the CNOT is the only gate
used, the circuit cannot have length greater tB¢k?) [12]. On the
other hand, one can repeat this construction with the TOFFOLI gate,
and it is not obvious that the circuit constructed need be short — but
it is also not obvious that the circuit constructed need be long.

8. CONCLUSIONS & FURTHER WORK

We have shown that local optimization is a scalable tool for re-
versible logic circuit optimization. Inverter cancellations alone can
provably achieve up to a 13% reduction, and large tables of circuit
equivalences empirically result in reductions of up to 37% for five-
wire circuits. Even on circuits with 30 inputs and a thousand gates,
runtimes are measured in tens of seconds.

However, random circuits may not be representative of reversible
circuits relevant to applications. The real test of local optimization
will come only after known reversible logic synthesis algorithms —
which take a permutation and return a circuit computing it — are
implemented. It may be the case that synthesis tools will produce
circuits which are unsuitable for random optimization; however, this
seems unlikely given the fact that known algorithms produce expo-
nentially long circuits even when shorter are possible [12].

Directions for further work in local optimization of reversible cir-
cuits fall into three general headings.

Storage of the optimal circuit library. The need for a larger gate
library is best evidenced by the poor performance of our symbolic re-
duction algorithm on TOFFOLI-only circuits: most reductions were
trivial gate cancellations. The problem is that since a TOFFOLI gate
occupies 3 wires by itself, it is hard to find sub-optimal 4-wire sub-
circuits. However, it is currently impossible to store a useful 5- or
6-wire optimal circuit library. One idea to improve storage is to store
optimal circuits up to relabelling of wires: this would reduce mem-
ory requirements by a factor &f for circuits of widthk. However,
care will have to be taken to avoid increasing runtime by the cor-
responding amount. Another idea to extend our circuit libraries is
to store sub-optimal circuits which cannot be reduced by local opti-
mization, and their optimal counterparts.

Improving sub-circuitenumeration. Our current sub-circuit enu-
meration misses some sub-circuits. However, a more exhaustive
enumeration would require more subtle data-structures. Addition-

9. REFERENCES

[1] C. Bennett, “Logical Reversibility of ComputationBM J. of
R.&D., 17,1973, pp. 525-532.

[2] T. Cormen et. al.Introduction to Algorithms, 2nd edThe

MIT Press, 2001.

B. Desoete and A. De Vos, “A Reversible Carry-Look-Ahead

Adder Using Control Gates,” Integration, the VLSI Journal,

33,2002, pp. 89-104.

R. Feynman, “Quantum Mechanical Computef3yitics

News 11, 1985, pp. 11-20.

L. K. Grover, “A Framework For Fast Quantum Mechanical

Algorithms,” Symp. On Theory of Computing, 1998.

K. lwama et al., “Transformation Rules For Designing

CNOT-based Quantum Circuits,” DAC 2002, pp. 419-425.

P. Kerntopf, “A Comparison of Logical Efficiency of

Reversible and Conventional Gates,” IWLS 2000, pp.

261-269.

[8] J. P. McGregor and R. B. Lee, “Architectural Enhancements
for Fast Subword Permutations with Repetitions in
Cryptographic Applications,” ICCD, 2001, pp. 453-461.

[9] W. McKeeman, “Peephole OptimizatiorCommunications of

the ACM 8, July 1965, pp. 443-444.

M. Nielsen and |. ChuangQuantum Computation and

Quantum InformationCambridge Univ. Press, 2000.

K. N. Patel et al., “Efficient Synthesis of Linear Reversible

Circuits,” 2003.

http://xxx.lanl.gov/abs/quant-ph/0302002

V. V. Shende et al., “Synthesis of Reversible Logic Circuits,”

to appear ilEEE Trans. on CAD2003.

http://xxx.lanl.gov/abs/quant-ph/0207001

T. Toffoli, “Reversible Computing,Tech. Memo

MIT/LCS/TM-151MIT Lab for Comp. Sci., 1980.

A. De Vos, B. Raa, and L. Storme, “Generating the Group of

Reversible Logic Gates,” Journal of Physics A: Mathematical

and General35, 2002, pp. 7063-7078.

S. Younis and T. Knight, “Asymptotically Zero Energy

Split-Level Charge Recovery LogicWWorkshop on Low

Power Design1994.

(3]

(4]
(5]
(6]
(7]

[10]

[11]

[12]

[13]

[14]

[15]

