
Scalable Simplification of Reversible Circuits ∗

Vivek V. Shende, Aditya K. Prasad, Ketan N. Patel, Igor L. Markov and John P. Hayes
Department of EECS, University of Michigan, 1301 Beal Ave., Ann Arbor, MI 48109-2122

{vshende,akprasad,knpatel,imarkov,jhayes }@eecs.umich.edu

ABSTRACT
Reversible logic circuit synthesis has applications in various mod-
ern computational problems, low power design, and quantum circuit
synthesis. Several algorithms for synthesis and simplification of re-
versible logic have been proposed recently; however, they tend to be
infeasible for circuits of more than a handful of inputs. In our work,
we examine scalable methods to reduce the gate count of a given re-
versible circuit. Theoretical considerations we take up suggest that
local optimization– that is, the process of picking sub-optimal sub-
circuits, and replacing them with smaller counterparts – may be a
fruitful approach. In practice, our methods work well on circuits
with up to 30 inputs, and find reductions in gate count as large as
35% in randomly generated circuits. We conclude with an example
of a circuit for which local optimization fails, and further directions
for research.

1. INTRODUCTION
Many modern computational problems are inherently reversible

in nature, meaning that information present in the input must be
conserved by the computation and be recoverable from the output.
Some fields in which such problems arise include cryptography, dig-
ital signal processing, and communications [8].

In addition, non-reversible circuits necessarily dissipate heat to
compensate for the loss of information they incur [1]. It has been
shown that some reversible circuits can be made asymptotically energy-
lossless as their delay is allowed to grow arbitrarily large [15]. In
fact, De Vos et al. have built reversible circuits of up to 384 transis-
tors, powered only by the input. Figure 1 shows one of their circuits
as seen by a scanning electron microscope [3].

Moreover, all quantum circuits are, by their nature, reversible.
Purely quantum gates are necessary for the exponential speed-up
enjoyed by many quantum algorithms, but generating classical re-
versible circuits is an important step toward quantum circuit synthe-
sis. Many quantum computational applications call for large classi-
cal reversible sub-circuits: in particular, the textbook implementa-
tion of Grover’s quantum search algorithm uses many CNT (CNOT,
NOT, and TOFFOLI) gates [10].
∗This work was partially supported by the Undergraduate Summer
Research Program at the University of Michigan and by the DARPA
QuIST program. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily rep-
resenting official policies or endorsements, either expressed or im-
plied, of the Defense Advanced Research Projects Agency (DARPA)
or the U.S. Government.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2003 ACM 0-89791-88-6/97/05 ...$5.00.

Figure 1: An image of a reversible CNT-circuit implemented in
CMOS by De Vos et al. This particular circuit uses 144 transis-
tors and no internal power supplies.

Some previous work has centered on generating circuits consist-
ing entirely of CNT gates. Toffoli [13] showed that the CNT gate
library is universal for the synthesis of reversible Boolean circuits.
This has been recently extended, and in particular it has been shown
that all even permutations can be synthesized with no temporary
storage lines, and that odd permutations require exactly one extra
line [12, 14]. Iwama et al. describe a simple but nontrivial set of
local transformation rules for CNT-circuits [6]. Their work focuses
on transforming circuits into a canonical form rather than with re-
ducing circuit size, but indicate that the theory of reversible circuits
would benefit from a more concrete heuristic for the latter.

Shende et al. describe a method for synthesizing optimal re-
versible circuits [12], which significantly outperforms the exhaus-
tive search methods used by Kerntopf to tabulate statistics for small
reversible circuits [7]. Still, even the improved algorithm was never
called upon to synthesize circuits on more than three wires, and was
never forced to output a circuit of more than twelve gates. It is evi-
dent that circuits on many more wires, containing many more gates,
could not be generated in a reasonable amount of time by the algo-
rithm presented there. They also suggest a heuristic which scales
much better, but may yield very sub-optimal circuits.

The present work offers fast simplification of CNT-circuits rather
than optimal methods that may not scale. We are interested in re-
ducing the number of gates in a given circuit without increasing the
number of bits on which the circuit operates – meaning that we al-
low no temporary storage, or constant inputs. This is motivated in
part by the fact that in quantum computing applications, qubits are
relatively expensive and gates are relatively cheap.

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

(a) (b)

Figure 2: Reversible circuit equivalences.

We use a greedy local search to find improvements that can be
achieved by changing a few gates at a time while preserving the
circuit function. Reversible circuits are particularly amenable to
such optimization, which falls roughly into the paradigm of dynamic
programming: large tables of circuit reduction rules that are pre-
computed by optimal methods [12] and can be stored in files. With
appropriate data structures, optimization can be performed in linear
time and is very fast in practice. It can be analogized withpeephole
optimizationin compilers [9], where only several lines of code are
optimized at a time.

The remainder of the paper is structured as follows. The neces-
sary background is given in Section 2. Section 3 motivates the use of
local optimization to reduce reversible circuits. Section 4 discusses
the generation of circuit libraries for use in the reduction procedure,
and Section 5 discusses the reduction procedure itself. We exam-
ine empirical results in Section 6 and some theoretical limitations to
local optimization in Section 7. Finally, conclusions and on-going
work are discussed in Section 8.

2. BACKGROUND
We are interested in reversible Boolean circuits. The condition for

a (combinational) circuit to be reversible amounts to requiring each
gate to be reversible, and requiring that no fan-out or feedback occur
in the circuit. A reversible gate must compute a bijective function,
and must therefore have the same number of inputs as outputs: this
number is its width.

In other words: if we were to draw the circuit as a graph, with
circuits as vertices, and directed edges representing wires (we allow
more than one edge to connect two vertices), the graph is required
to be acyclic, and every vertex must have as many edges entering as
leaving. It follows that for any cross-section of the circuit, adding the
number of wires cut to the widths of the gates cut yields a constant:
its width. Clearly this is the same as the number of inputs to the
circuit, or number of outputs.

Because the number of wires entering a gate is the same as the
number of wires leaving, we may think of wires not as stretching
merely from one gate to another, but going throughout the whole
circuit, with gates appearing on them from time to time. Alterna-
tively, we can think of bits in a register, on which we can perform
reversible operations, but cannot physically move anywhere – this
formulation corresponds to the quantum computing context.

2.1 The CNT Gate Library
The gates used in our reversible circuits are members of a larger

family introduced by Toffoli [13]. Thek-Controlled NOT gate, or
k-CNOT, is a widthk+1 gate. It leaves the firstk inputs unchanged,
and inverts the last iff all others are 1. The first threek-CNOT gates
have special names. The 0-CNOT is just an inverter, or NOT gate
(N). The 1-CNOT is just called a CNOT gate (C), and the 2-CNOT
is called a TOFFOLI gate (T). These three gates comprise the CNT
library, and a reversible circuit made up of only these gates is called
a CNT-circuit. Our circuits will all be CNT-circuits: the CNT gate
library is universal [13], and these particular gates appear often in
the quantum computing context [10].

We draw CNT-circuits as arrays of horizontal lines representing
wires, in which gates are represented by vertically-oriented symbols

[4]. The⊕ symbols represent inverters and the• symbols represent
controls. A vertical line connecting a control to an inverter means
that the inverter is only applied if the wire on which the control is
set carries a 1 signal. The circuit in Figure 2(a) computes the same
function as a single C gate. Such pairs of equivalent circuits are
useful in optimization: we can replace the larger with the smaller to
effect a circuit reduction.

2.2 Sub-circuits
Finding sub-circuits to reduce is central to the present work. We

intuitively understand a sub-circuit to be a collection of gates with
the property that we may “draw a box” around it and treat it as the
inner workings of some larger gate. To make this precise, we con-
sider the topological ordering of the gates in a circuit. For gatesG,H
in a circuitC, we sayH >C G (or equivalentlyG <C H) if there is
some non-trivial path fromH to G in the graph representingC. The
>C relation is a strict partial order: from the definition of a path,
it is clear thatF >C G, andG >C H imply F >C H. In addition,
since we require nontrivial paths, no gate follows itself and we can-
not have bothG >C H andH >C G: otherwise, there would be a
loop in the graph, which is required to be acyclic. But>C is not a
total order: for example, in a two-wire circuit with one NOT gate on
each wire, neither follows the other. Finally, we abbreviate>C to >
if it is clear which circuit we are talking about.

We say that a subsetSof the gates in a circuitC is replaceable if,
for all gatesG∈C, and for all gatesF,H ∈S, H > G> F =⇒ G∈S.
Given a replaceable subset of gates, their order relations, and which
wires they operate on, we may recover all the details about how they
are interconnected in the original circuit. We will henceforth under-
stand that all gates “know” which wires they operate on; therefore,
a sub-circuit is given by a replaceable subset of gates together with
their order properties. We generally do not distinguish a sub-circuit
from the underlying replaceable subset, and in fact denote them with
the same letter:S= (S,>C |S). Finally, a sub-circuit can be thought
of as a circuit in its own right.

2.3 Circuit Encoding
It is not at all evident what sorts of data structures should be used

to encode reversible circuits. Ideally, we want a data structure that
captures the order properties of the circuit to be encoded. That is to
say, we would like to encode a circuitC in a data structureDC in
such a way that the representation of the gateG occurs “after” the
representation of a gateH iff G > H.

We can satisfy the “if” part of the condition by using an array like
data-structure, for example, an STLvector . It suffices to proceed
from the inputs of a circuit to the outputs, adding gates to the end
of the array and removing them from the beginning of the circuit.
When two gates are both situated at the inputs, we choose arbitrarily
which to encode first. This procedure preserves the ordering: it is
the text-book proof that a finite partially ordered set can be extended
to a total order by depth-first search [2].

However, the result of the arbitrary choices made in the encoding
procedure is that we cannot possibly ensure that the representation
of G occurs after the representation ofH only if G > H. In fact, it is
clear even from the example of the two-wire circuit with a NOT gate
on each wire that we cannot satisfy this condition in general: neither
of these gates follows the other, but one must come first in the array.

We are left with a choice: either reject using the array in favor
of something more complicated, or take pains to ensure that the ar-
bitrary choice of encoding order does not affect the result of our
algorithms. In this paper, we take the second option: the price is that
locating all sub-circuits is a nontrivial task. However, the following
characterization of sub-circuits is useful.

PROPOSITION 1. A subset S of a circuit C is a sub-circuit if and
only if there is an encoding EC such that the gates from S form a
contiguous block in EC.
Proof: The “if” part of the proposition is obvious. So supposeS is
a sub-circuit ofC. We claim that the setT, of gates inC which are
neither inS nor follow any gate inS, forms a sub-circuit. Suppose
a,b ∈ T, anda < x < b for some gatex. If x ∈ S, we haveb > x,
which is a contradiction, and if for some gates∈ S, we havex > s,
thenb > x > s =⇒ b > s, which is again a contradiction. LetR be
the set of gates that follow some gate inS, but are not inS; this is
similarly a sub-circuit. We may considerR,S,T as circuits in their
own right, and encode them in arraysER,ES,ET . We claim that the
concatenationEC = ETESER is a valid encoding forC.

To show this, we need to show that the order properties ofC are
preserved inEC, and in fact it suffices to show the following claims:
(1) No gate inS follows any gate inT, (2) No gate inR follows any
gate inS, and (3) No gate inR follows any gate inT. Claims (1) and
(2) are immediate from the definitions. Suppose some gater ∈ R is
followed by some gatet ∈ T. By definition, there exists somes∈ S
such thatt > s, hence we haver > t > s, andr follows some gate in
S, which is a contradiction.

2.4 The Random Circuit Model
Reversible computation has yet to achieve sufficient popularity for

benchmarking circuits to be publicly available. Moreover, we know
of no tools to take a given permutation and return a reversible circuit
computing it, although some methods of doing this have been sug-
gested in the literature [12]. Therefore, in the interest of testing our
methods, we generate random CNT-circuits, to simulate a simple but
inefficient synthesis algorithm. The random circuit generating pro-
cedure constructs circuits sequentially by first selecting a gate type
(C, N, or T) based on some probability distribution(pC, pN, pT),
and selecting wires for the gate inputs at random. The wires avail-
able for the next gate are the same as the wires for the previous, save
that those wires which the previous gate took as inputs are replaced
by wires corresponding to the outputs of the previous gate. For us,
pC = pN = pT = 1

3.
We point out that the random circuit model should not be under-

stood as representing circuits which occur in practice. Most func-
tions require circuits of lengthO(n2n/log(n)), for n the number of
inputs [12]. It follows that most random circuits of this length will
not be reducible to circuits of a reasonable length. Circuits used in
practice, however, tend to be reducible to a non-exponential size.
Therefore, while we use the random circuit model to give some pre-
liminary data as to what sorts of reductions one can expect, the ulti-
mate test of these methods needs to be against “real” circuits.

3. THEORETICAL MOTIVATION
Two consecutive inverters on the same wire can be canceled out.

Similarly, if two CNOT gates appear consecutively on a pair of
wires, and use the same wire for a control, they may be canceled
out, and the same is true of matching TOFFOLI gates. These are the
most elementary local reductions: clearly a single gate sub-circuit
cannot be replaced with anything shorter, and it turns out that two
gates can never be replaced by one. Before working out algorithms
to deal with more complicated reduction schematics, let us deter-
mine how far cancellation alone can go. For the duration of this sec-
tion, we consider cancellations on a long random circuit ofk wires.
We proceed through the circuit from inputs to outputs looking for
duplicate gates that we can eliminate.

Let K be an arbitrary gate type which cancels itself out, like NOT,
CNOT, or TOFFOLI. We are interested in the percent reduction that
results from cancelling K-gates out. Because each cancellation re-
moves 2 K-gates from the circuit, the percent reduction is twice the
probability,P(redK), that a given K-gate is the first in a cancellation.

Let pK be the probability that a given gate in the circuit is of type
K. For an arbitrary K-gateA in the circuit, letPK be the probability
that a K-gateB we can cancel withA appears before an obstruction
to cancellation. In general,PK is a function of the probability dis-
tribution of the gates in the circuit. ClearlyP(redK) < pKPK , but
this bound is not sharp: the first K-gate may have been eliminated
in an earlier reduction. To eliminate this possibility, we ensure that
the number of gates which precede the given gate and could cancel it
is even. This probability is approximated by the following formula,
which is precise in the limit of long circuits.

P(redK)≈ pKPK(1−PK)(1+P2
K +P4

K · · ·) =
pKPK

1+PK

We now calculate this for the specific case of a CNT circuit, and
for K=NOT, CNOT, and TOFFOLI. LetpN, pC and pT denote the
respective relative probabilities of these gates. A NOT gate may
cancel with another NOT gate on the same wire so long as no gate
between them is controlled on their wire. An inverter we may cancel
appears with the same probability as a CNOT that obstructs cancel-
lation, but TOFFOLI gates have two controls, so it is twice as likely
that a TOFFOLI gate obstructs an inverter cancellation. Thus,

PN =
pN

pN + pC +2· pT
.

Similar calculations can be made for CNOT and TOFFOLI gates.
One important difference is that for the NOT case we only had to
consider the effect of a control occurring between two NOT gates;
for the CNOT and TOFFOLI cases we also need to consider the
effect of a target occurring between the gates’ controls.

PC =
pC

pN(k−1)+ pC(2k−2)+ pT (3k−5)

PT =
pT

pN(k2−3k+2)+ pC
3k2−11k+10

2 + pT(2k2−8k+9)

For equiprobable gate types (pC = pN = pT = 1/3), we find that

P(redN) ≈ 1/15

P(redC) ≈ 1/(18k−21)

P(redT) ≈ 2/(27k2−99k+102)

In contrast with the NOT case, the effectiveness of CNOT and TOF-
FOLI cancellations decreases ask increases. Intuitively this makes
sense. Taking the example of the CNOT reduction, there is only one
CNOT gate that can form a pair with another while there are 2k−3
CNOT gates that can eliminate the possibility of a pair, and it is
correspondingly worse for TOFFOLI gates.

As two gates are eliminated each time we apply a reduction, the
expected percentage reduction from NOT cancellations alone is 2/15≈
13.3%. Note that cancelling inverters out is a special case of local
optimization: we know that certain gate configurations are equiva-
lent to an empty circuit, so we replace them as we find them. There
are many more such reductions – but in general, we replace more
gates with less gates rather than two gates with none. To make bet-
ter reductions, we pre-compute a library of optimal circuits, with
which we replace any longer, equivalent circuits we find.

4. CIRCUIT LIBRARY GENERATION
Our method for local optimization relies on our ability to deter-

mine whether or not a given circuit or sub-circuit is optimal – that
is, whether or not there is an equivalent circuit that employs fewer
gates. Any circuits or sub-circuits which are not optimal are called
sub-optimal. Any sub-circuit of an optimal circuit is optimal.

One can check if a given circuitC onn wires is optimal as follows:
build a libraryL of all optimal circuits onn wires, and check ifC ∈
L. In fact, L need only contain the optimal circuits smaller than

C: if any circuit in L computes the same function asC, thenC is
suboptimal, and if no circuit inL computes the same function onC,
thenC is optimal by definition. Running through all the circuits in
the library, determining the functions they compute, and comparing
each withC is time consuming. Instead, we store the library as an
STL hash set of circuits, indexed by the (pre-computed) function
they compute. Two circuits can have the same index, but it suffices
to store only one optimal circuit for each function.

In short, we are interested in building circuit libraries contain-
ing one representative optimal circuit for each function that may be
computed ind or fewer gates onn wires. We call such a library
an OCRL(d,n) (optimal circuit representative library). Observe that
the firstd−1 gates of an optimald-gate circuit themselves form an
optimal sub-circuit. Therefore, to generate an OCRL(d,n) from an
OCRL(d− 1,n), it suffices to iterate through(d− 1)-gate circuits
from the OCRL(d−1,n), and add single gates to the end of each in
all possible ways. It now suffices to iterate through the resultant cir-
cuits, adding them to the OCRL iff they compute a function which
no circuit currently in the OCRL computes. This ensures that only
optimal circuits are added, and that only one optimal circuit comput-
ing a given function is added.

The approach described above was taken in [12]. The authors of
that paper were interested in the problem of synthesizing optimal re-
versible circuits, which they did using a depth-first search algorithm
accelerated by means of an OCRL. To illustrate their methods, they
built an OCRL(3,3), and proceeded to synthesize optimal circuits
of up to eight gates on three wires for each of the 8!= 40,320 re-
versible functions on three inputs. They claim that generating the
OCRL(3,3) takes a negligible amount of time, and that synthesizing
the remaining functions takes 215 seconds.

Here, however, we are interested in optimal circuits on four wires
rather than three, for reasons that are clarified in Section 5. The
number of such functions is(24)!, which is greater than 20 trillion.
Memory constraints allow us to generate only up to approximately
40 million; in the interest of time and disk space, we choose to limit
ourselves to circuits of depth 6, of which there are approximately
26 million. The generation of the OCRL(6,4) is fast; details are
listed in Table 3. Because our library contains only circuits of up
to six gates, we cannot always determine the optimality of a sub-
circuit with more than six gates. This is a tradeoff we have to deal
with because of memory constraints. In practice, however, we find
that most circuits are heavily populated with sub-circuits that can be
reduced to six or fewer gates.

Our ability to generate and store very many circuits depends on
a compact storage method we devised specifically for this purpose.
Each gate occupies just one byte using the following bit-packing
method. Because we only implement three gates, the gate’s type can
be stored in two bits. Each of the gate’s operands can be represented
by two bits as well, since we are only operating on four wires. Since
no gate operates on more than three wires, the entire gate takes just
eight bits (for NOT and CNOT gates, the excess operands are just
ignored). Our representation of circuits for generation also packs
data efficiently. We store up to seven gates, along with the number
of gates – this takes eight bytes.

We also store the function the circuit computes. A reversible cir-
cuit onn wires permutes its 2n possible input vectors. Therefore, on
four wires, we store the function as a permutation of 16 values. Each
value requires 4 bits, and as there are 16 of them, the whole function
is stored in a 64-bit variable of typelong long int . We can
quickly hash these values by adding the high 32 bits to the low 32
bits times a prime number.

In Table 3, we see that the time required to generate circuit li-
braries is nearly linear in the number of circuits: we generate about
200,000 circuits per second. This speed is in part attributable to the
compactness of our data storage. We store each circuit is described

bool CAN JOIN(subcirc S, circ C, gate g)
for each h from g to S.pivot

if !(S.contains(h) or CAN SWAP(g,h))
return false

return true

list FIND SUBCIRCS(gate PIVOT, circ C)
subcirc S ← {PIVOT}
list L ← {S}
i ← 0

while (L[i]!= NIL)
S ← L[i]
for each g not in S

if ON SAMEWIRES(S,g)
if CAN JOIN(S, C, g)

S ← S + g
else if TOTAL WIRES(S,g) ≤ k

if CAN JOIN(S, C, g)
T ← S + g

L.append(T)
i ← i+1

return L

Figure 3: Pseudo-code for sub-circuit enumeration.

in only 16 bytes, which allows us to fit all 26 million or so depth-6
circuits in under half a gigabyte of memory. In [12], generating all
functions on three wires and saving them to disk took 3.5 seconds;
we require only 0.4 seconds. More importantly, their storage method
could not accommodate such large libraries on four wires.

5. CIRCUIT REDUCTION
Our goal is to reduce CNT circuits with many gates and wires. To

accomplish this, we traverse small sections of these circuits and op-
timize them sequentially. This approach is reminiscent ofpeephole
optimization often employed by modern compilers, which simplifies
small sections of code at a time [9].

We are interested in replacing sub-circuits with smaller equivalent
circuits. But the number of sub-circuits of a given circuit is expo-
nential in the number of gates in the circuit; moreover, many of these
yield no fruitful reductions. Sub-circuits which are too short are of-
ten already optimal, whereas sub-circuits which are too long, while
probably sub-optimal, may not have an optimal realization small
enough to be found in a pre-generated circuit library. Moreover,
our method of generating circuit libraries requires that we pick the
number of wires in advance – that is, we need to choose the width of
the sub-circuits we plan to examine.

We are now faced with the task of enumerating the sub-circuits
of a given fixed width that appear in a circuitC, given the encoded
circuit,EC. Recall that sub-circuits are characterized by the property
that they are contiguous in some encoding array,E′C. Listing all
encoding arraysE′C would take a long time. Instead we look at the
transformations by whichEC may be altered without changing the
circuit it encodes, and enumerate sets of gates which can be made
contiguous by a sequence of such transformations.

PROPOSITION 2. If g,h share no wires and are consecutive gates
in an encoding array, g does not follow h, and h does not follow g.
We can swap them without changing the circuit represented by the
encoding array.

Given an encoding array,E, and apivotgate,p, we can enumerate
all maximal width-k sub-circuits, containingp, which can be made

Figure 4: The highlighted gates in the left-most circuit form a sub-circuit on the solid wires. We can make them contiguous, as is shown
in the middle circuit. This sub-circuit is suboptimal, and can be reduced, yielding the circuit on the right.

contiguous without changing the position ofp in the encoding array.
The algorithm proceeds as follows. InitializeL as an empty list of
sub-circuits, and add toL the sub-circuitS1 consisting ofp alone.
We now traverse the sub-circuitsSof L, beginning withS= S1.

For a given sub-circuit,S, with pivot p and right-most (in the en-
coding) gategr , we iterate through all gates fromgr to the end of the
circuit. For each such gateg, we check first if the total number of
wires used byg and bySexceeds the maximal width of sub-circuits
we are interested in,k. If not, we check whether there are any gates
x in the encoding array betweenp andg which satisfyp< x < g but
fail to be inS, otherwise we know thatS

S
g forms a sub-circuit. If

S already operates on all the wires whichg affects, then we addg
to Sand begin again with the gate to the right ofg. If not, we form
a new sub-circuitS′, consisting ofS andg, put it at the end of the
list of sub-circuits, and continue looking for gates to add toS. Once
we have finished looking betweengr and the end of the sub-circuit,
we look between the leftmost gategl and the beginning of the sub-
circuit, and when this is finished, we move on to the next sub-circuit
in the list. By the end, we have a list of sub-circuits (L), each op-
erating on a different set of wires, all employingP as their pivot.
Pseudo-code is given in Figure 3.

Finally, note that in searching for sub-circuits, the only question
we ever ask of two gates is whether they can move past each other in
the encoding array. Originally, we were asking whether they could
move past each other in the encoding array without changing the
structure of the circuit represented. However, sometimes gates can
be moved past each other in the circuit itself without changing the
function being computed. In this case, we can also interchange them
in the encoding array. We use commutability rules from the literature
[12, Corollary 26]. An example is given in Figure 4

No matter how many sub-circuits are found, we may, in general,
only optimize one of them. This happens because they may inter-
sect in various ways, and after optimizing one, the others may no
longer occur in the new circuit. In the instance that more than one
of the sub-circuits we found are optimizable, we need a heuristic to
decide which of these circuits we should optimize. We tried several
different choices. Results appear in Section 6.

6. EMPIRICAL RESULTS
Our description of the algorithm in Section 5 leaves many parame-

ters unspecified, and we would like to optimize them for both speed
and performance by running empirical tests. Moreover, we would
like to know what effect various factors such as circuit size, circuit
library size, and limited gate libraries have on the efficacy of our
algorithm. In this section, we investigate these questions.

6.1 Algorithmic Improvements
The discussion in Section 5 left unspecified various implementa-

tion details. These include: how far from the pivot gate we search
for sub-circuits, how many sub-circuits we collect in the list before
trying to optimize them, and how we choose which sub-circuit to
optimize when we are ready to do so. Here, we implement and com-
pare several different algorithms. Our first method, LocalA, is as
follows. For each pivot, look for sub-circuits all the way from one
end of the circuit to the other, collect them, reduce whichever one

can be reduced by the largest amount, and then proceed to the next
pivot.

We ran LocalA on random circuits with 5, 10, or 20 wires, and
250, 500, or 1000 gates. We found that the greatest reduction oc-
curred on circuits with 5 wires. As the number of wires grows, this
reduction factor decreases considerably. However, even on 20 wires,
the program was able to reduce the gate count to 79.6% of its orig-
inal value. The reductive efficiency was relatively constant as the
initial gate count varied. Results are given in Table 1.

We made several modifications to this basic algorithm, both to
improve its reduction ability, and to decrease runtime. One alterna-
tive: instead of reducing sub-circuits after each pivot, traverse the
entire circuit to find the most reducible sub-circuit, reduce it, and
continue. This variation took about 35 times longer than LocalA.
Because it only made one reduction per pass through the circuit, it
had to make very many passes before it could find no more. How-
ever, we found that it offered no reduction increase on average, and
actually did worse in some cases. We tried the opposite: instead the
most reducible sub-circuit, search for the least. This took as long
without producing any benefits.

We did glean some interesting information from these versions,
however. For the greedy version, we found that the maximum re-
duction almost always diminished with each pass. On circuits with
5 wires and 1000 gates, the first pass through often found reductions
of up to 15 or 20 gates at a time. Within a few passes, however,
it dropped below 10. On average, the algorithm made 100 passes
through the circuit before it could not find any more reductions.

Based on the evidence gathered from the last two algorithms, we
tried the following: instead of searching through all of the sub-
circuits for a given pivot before reducing one, we immediately re-
duced the first one we could. We found that the great majority of
pivots had no reducible sub-circuits; therefore, this improvement
took away no ability in reduction. However, it produced nearly a
40% reduction in time.

The next improvement we found was even more significant. In
LocalA, we pick a pivot and examine the circuit from end to end to
find sub-circuit. This takes time at least proportional to the circuit
size. We repeat this process for all gates in the circuit, so LocalA
runs inΩ(n2) time, wheren is the number of gates. In Table 1, we
see the impact this has on runtime. However, we know intuitively
that the algorithm should not be worse than linear: we could run it

Runtime of Local A, sec Runtime of Local B, sec
#gates 5 wrs 10 wrs 20 wrs 5 wrs 10 wrs 20 wrs
1000 3 20 106 1.7 3.8 10.1
500 1 9 45 .8 1.6 3.5
250 0 4 21 .2 .5 1.1

%Rdx 35.2 25.6 23.0 37.3 25.6 21.0

Table 1: Runtimes and performance of our algorithms. All
tests performed on a 2GHz Pentium-4 Xeon workstation. Per-
formance is measured in percent reductive efficiency,100 times
the change in circuit size, divided by the original circuit size.

on the first 100 gates, and repeat for the remaining sets of 100 gates,
and should obtain similar results in linear time.

An empirical observation shows how to make this possible. Al-
though gates which constitute a given sub-circuit may theoretically
appear arbitrarily far away from each other in an encoding array,
this is unlikely to happen in practice. Empirically, none of the sub-
circuits on 5 to 20 wires ever extend more than 50 gates from the
pivot. In fact, the overwhelming majority stay within 30 gates. We
adjusted the loop accordingly: whereas before we examined all gates
from the pivot to both ends, we now examine only those that are up
to 30 gates away from it. As this yields significant savings in runtime
while sacrificing little reductive efficiency, we use this modification
in all later variants.

We tested the new algorithm (LocalB) on many circuits, of the
same size we tested LocalA with. The improvements in runtime
over LocalA were significant. LocalB was over 10 times faster for
20 wires and 1000 gates. More results are given in Table 1.

6.2 Reduction Versus Circuit Size
To determine the performance of LocalB on circuits of different

widths, we tried varying the wire count from 5 wires to 30 wires.
We ran it with circuits of varying sizes again, and averaged their
reduction amounts. The times listed in Table 2 are for circuits of
250 gates. As shown by the table, the reduction ability of the al-
gorithm becomes worse as circuit width increases, leveling to about
80% with 30 wires. Runtimes remain fairly low.

6.3 Reduction Versus Library Size
To test the efficacy of our circuit library, we created several more

optimal libraries to test it against. We generated libraries with max-
imum depths ranging from 0 gates – the identity function alone – up
to a depth of 6 gates – the ordinary size of our circuit library. Table
3 shows the sizes of the various gate libraries we tested. A depth of
6 was the greatest we could store in memory.

The runtime differences between different library sizes were neg-
ligible for both 5 and 10 wires. What’s interesting is that the reduc-
tion performance degradation is very slight from depth 6 to depth 5,
despite the fact that there are more than 10 times as many circuits of
depth 6 as depth 5. A further look into the size distributions made
the reason for this evident. On 10 wires, more than 99% of the sub-
circuits found had gate counts less than 7, and 98% had fewer than
6. A depth 6 library, therefore, is sufficient for the large majority of
sub-circuits we find.

The data for depth-0 circuits is also interesting. Because the only
function computable with 0 gates is the identity function, gate can-
cellations account for almost all reductions which may be achieved
with this library, and empirically, the vast majority of these were in-
verter cancellations. The program was able to reduce the gate count
by about 12% in both cases, which almost matches the expected re-
duction value of 13.3% computed in Section 3. It falls short for two
reasons: the thirty gate bound on the search distance from the pivot
gate costs up to 2% of reductions, as can be seen in Table 1, and the
value of 13.3% applied to arbitrarily large circuits.

6.4 Circuits with Restricted Libraries
In [12, Theorem 33], a constructive synthesis procedure is given to

decompose an arbitrary permutation into a CNT-circuit. In fact, the
resultant circuit breaks down into four sub-circuits, each of which

Input Circuits of Different Widths
wires 5 7 10 15 20 25 30
%Rdx 37.5 29.4 24.9 22.9 21.7 20.5 19.5
Time, sec .2 .4 .6 1.0 1.5 1.9 3.1

Table 2: LocalB applied to circuits of various widths.

Circuit Libraries of Different Depths
Depth 0 1 2 3 4 5 6
%Rdx, 5wrs 12.4 18.3 26.4 30.8 33.5 35.5 37.0
%Rdx, 10wrs 11.6 15.7 21.9 24.2 25.0 25.9 25.9

Circuits 1 29 605 10K 158K 2.1M 26M
Time (sec) 0 0 0 0 1 10 152

Table 3: Characteristics of an OCRL(n,4) for various n: reduc-
tion efficiency on 5, 10 wires, number of circuits in the OCRL,
and build-time.

has only one gate type: the first contains only TOFFOLI gates,
the second only CNOTs, the third only TOFFOLIs, and the fourth
only inverters. These sub-circuits contain up to 3(2n−n)(3n−7),
n2/ logn, 3(2n+1)(3n−7), andn gates, respectively [12, 11]. We
now examine how well local optimization works on circuits com-
prised only of TOFFOLI, or only of CNOT gates.

First, we build an optimal circuit library specific to the problem,
that is, consisting of only circuits that only use the gate in question.
The sub-circuit width we fix at 4 wires. For CNOT gates, we can
store the full OCRL(9,4), capturing all 20160 functions computable
with CNOT gates on 4 wires. For TOFFOLI gates, we store 20 mil-
lion circuits, which turns out to be halfway between the OCRL(9,4)
and the OCRL(10,4). The first of these libraries took less than a
second to build, while the second took approximately 5 minutes.
Experiments were performed on a circuit on 5 wires and containing
1000 gates. On average, 25.6% of the CNOT only circuit remained,
and 88.6% of TOFFOLI gates remained.

We can compute how much of the reduction was likely due to gate
cancellations by the methods in Section 3. For a CNOT only circuit,
we havepN = pT = 0 andpC = 1, henceP(redC) = 1

2k−1. We ex-

pect CNOT cancellations to remove2
2k−1 = 22.2% of the original

gates. Therefore, 52.2% of the CNOT gates were removed by more
complicated reductions. On the other hand, we would expect that
an average of 10% of the original gates in a random TOFFOLI only
circuit would cancel, so only 1.4% of the original TOFFOLI gates
were removed by more complicated reductions.

7. LIMITATIONS
Our empirical results for random circuits show that significant im-

provements are possible using local optimizations, however there are
some theoretical limitations to this approach. We know that any irre-
ducible CNT-circuit can have no reducible sub-circuits. We can also
show that the converse is not true in the following strong sense.

PROPOSITION 3. For any d there is a reducible CNT-circuit with
depth≥ d and no reducible proper sub-circuits.
Proof: The proof is by construction. For a givend we first con-
struct the circuit shown in the shaded box in Figure 5 withk = d.
This CNT-circuit hask gates and depthd. It computes a function
that changes the values ofk wires, since each wire has exactly one
CNOT that acts on it. Since the circuit has onlyk gates, it must
be irreducible; otherwise there would exist a CNT-circuit that used
fewer thank gates to modify the values ofk wires, which is not pos-
sible since each CNT-gate has only one target. Because the circuit is
irreducible, it follows that its sub-circuits must also be irreducible.

Now we repeat the pattern in our construction, adding one gate at
a time, as shown on Figure 5, and stopping once we have a reducible
circuit. This circuit can have no reducible sub-circuits, because of
the cyclic structure of the construction. In particular, suppose the
sub-circuit formed between gate numbersi and j inclusively was
reducible, then this would imply that the sub-circuit formed by the
first j− i +1 gates was also reducible since the two sub-circuits are
identical up to a relabeling of the inputs. However, this would be
a contradiction since we stopped adding gates as soon as we had a
reducible circuit. Therefore, we have constructed a reducible circuit

x1 x2 x3

xi

k

i=2

x1 x2

k−1

x1

x

x

x

x

x

k

4

3

2

xi

k

i=1

Figure 5: Example showing that for any d there is a reducible
CNT-circuit with depth ≥ d and no sub-optimal proper sub-
circuits.

with depth≥ d, that has no reducible proper sub-circuits.

One consequence of this proposition is that no matter how large a
library of local reducibility relations we have, there are circuits that
cannot be reduced using our local reductions. However, we note that
the above example is only guaranteed to usek+ 1 gates, wherek
is the number of wires. In fact, because the CNOT is the only gate
used, the circuit cannot have length greater thanO(k2) [12]. On the
other hand, one can repeat this construction with the TOFFOLI gate,
and it is not obvious that the circuit constructed need be short – but
it is also not obvious that the circuit constructed need be long.

8. CONCLUSIONS & FURTHER WORK
We have shown that local optimization is a scalable tool for re-

versible logic circuit optimization. Inverter cancellations alone can
provably achieve up to a 13% reduction, and large tables of circuit
equivalences empirically result in reductions of up to 37% for five-
wire circuits. Even on circuits with 30 inputs and a thousand gates,
runtimes are measured in tens of seconds.

However, random circuits may not be representative of reversible
circuits relevant to applications. The real test of local optimization
will come only after known reversible logic synthesis algorithms –
which take a permutation and return a circuit computing it – are
implemented. It may be the case that synthesis tools will produce
circuits which are unsuitable for random optimization; however, this
seems unlikely given the fact that known algorithms produce expo-
nentially long circuits even when shorter are possible [12].

Directions for further work in local optimization of reversible cir-
cuits fall into three general headings.

Storage of the optimal circuit library. The need for a larger gate
library is best evidenced by the poor performance of our symbolic re-
duction algorithm on TOFFOLI-only circuits: most reductions were
trivial gate cancellations. The problem is that since a TOFFOLI gate
occupies 3 wires by itself, it is hard to find sub-optimal 4-wire sub-
circuits. However, it is currently impossible to store a useful 5- or
6-wire optimal circuit library. One idea to improve storage is to store
optimal circuits up to relabelling of wires: this would reduce mem-
ory requirements by a factor ofk! for circuits of widthk. However,
care will have to be taken to avoid increasing runtime by the cor-
responding amount. Another idea to extend our circuit libraries is
to store sub-optimal circuits which cannot be reduced by local opti-
mization, and their optimal counterparts.

Improving sub-circuit enumeration. Our current sub-circuit enu-
meration misses some sub-circuits. However, a more exhaustive
enumeration would require more subtle data-structures. Addition-

ally, our ability to find sub-circuits depends on our knowledge of
commutability rules: as it is, we only know one [12, Corollary 26].
It would be advantageous to know more. Moreover, given that com-
mutability seems central to finding sub-circuits, perhaps we should
(1) extend our gate library to include more commutable gates, and
(2) in the optimal circuit library, prefer more commutable sub-circuits.

Non-local optimizations. Two consecutive CNOT gates occur-
ring on the same wires with the same orientation cancel out, but if
they occur with opposing orientations, they may instead be replaced
by a single CNOT and a wire swap. Wire swaps may all be pushed
to the end of the circuit; doing so introduces no new gates. More-
over, because any permutation ofn wires may be accomplished in
n−1 transpositions, at mostn−1 swaps are required in all, each of
which cost 3 CNOT gates. Novel techniques for CNOT-circuit syn-
thesis can be applied at this point for further potential optimizations
[11]. The methods of Section 3 indicate that the reduction achieved
using this technique will be comparable to that offered by canceling
CNOT gates. We note that this is not a local optimization: it collects
CNOT gates from all over the circuit, groups them into wire swaps,
and moves the wire swaps to the end of the circuit, where they can
be cancelled. There may be similar groupings of larger numbers of
gates that also allow for non-local optimization.

9. REFERENCES
[1] C. Bennett, “Logical Reversibility of Computation,”IBM J. of

R. & D., 17, 1973, pp. 525-532.
[2] T. Cormen et. al.,Introduction to Algorithms, 2nd ed., The

MIT Press, 2001.
[3] B. Desoete and A. De Vos, “A Reversible Carry-Look-Ahead

Adder Using Control Gates,” Integration, the VLSI Journal,
33, 2002, pp. 89-104.

[4] R. Feynman, “Quantum Mechanical Computers,”Optics
News, 11, 1985, pp. 11-20.

[5] L. K. Grover, “A Framework For Fast Quantum Mechanical
Algorithms,” Symp. On Theory of Computing, 1998.

[6] K. Iwama et al., “Transformation Rules For Designing
CNOT-based Quantum Circuits,” DAC 2002, pp. 419-425.

[7] P. Kerntopf, “A Comparison of Logical Efficiency of
Reversible and Conventional Gates,” IWLS 2000, pp.
261-269.

[8] J. P. McGregor and R. B. Lee, “Architectural Enhancements
for Fast Subword Permutations with Repetitions in
Cryptographic Applications,” ICCD, 2001, pp. 453-461.

[9] W. McKeeman, “Peephole Optimization,”Communications of
the ACM, 8, July 1965, pp. 443-444.

[10] M. Nielsen and I. Chuang,Quantum Computation and
Quantum Information, Cambridge Univ. Press, 2000.

[11] K. N. Patel et al., “Efficient Synthesis of Linear Reversible
Circuits,” 2003.
http://xxx.lanl.gov/abs/quant-ph/0302002

[12] V. V. Shende et al., “Synthesis of Reversible Logic Circuits,”
to appear inIEEE Trans. on CAD, 2003.
http://xxx.lanl.gov/abs/quant-ph/0207001

[13] T. Toffoli, “Reversible Computing,”Tech. Memo
MIT/LCS/TM-151, MIT Lab for Comp. Sci., 1980.

[14] A. De Vos, B. Raa, and L. Storme, “Generating the Group of
Reversible Logic Gates,” Journal of Physics A: Mathematical
and General,35, 2002, pp. 7063-7078.

[15] S. Younis and T. Knight, “Asymptotically Zero Energy
Split-Level Charge Recovery Logic,”Workshop on Low
Power Design, 1994.

