
Reversible Logic Circuit Synthesis �

Vivek V. Shende, Aditya K. Prasad, Igor L. Markov, and John P. Hayes
University of Michigan, Advanced Computer Architecture Laboratory, Ann Arbor, MI 48109-2122

fvshende,akprasad,imarkov,jhayes g@umich.edu

ABSTRACT
Reversible, or information-lossless, circuits have applications in
digital signal processing, communication, computer graphics and
cryptography. They are also a fundamental requirement for quan-
tum computation. We investigate the synthesis of reversible circuits
that employ a minimum number of gates and contain no redun-
dant input-output line-pairs (temporary storage channels). We pro-
pose new constructions for reversible circuits composed of NOT,
Controlled-NOT, and TOFFOLI gates (theCNT gate library) based
on permutation theory. A new algorithm is given to synthesize op-
timal reversible circuits using an arbitrary gate library, and we de-
scribe much faster heuristic algorithms. We also pursue applica-
tions of the proposed techniques to the synthesis of quantum cir-
cuits.

1. INTRODUCTION
In most computing tasks, the number of output bits is relatively

small compared to the number of input bits. For example, in a de-
cision problem, the output is only one bit (yes or no), and the input
can be as large as desired. However, computational tasks in digital
signal processing, communication, computer graphics and cryptog-
raphy require that all of the information encoded in the input be pre-
served in the output. Some of those tasks are important enough to
justify new microprocessor instructions to HP PA-RISC (MAX and
MAX-2), Sun SPARC (VIS), PowerPC (AltiVec), IA-32 and IA-64
(MMX) instruction sets [15, 9]. In particular, new bit-permutation
instructions were shown to vastly improve performance of several
standard algorithms, including matrix transposition and DES, as
well as recent cryptographic algorithms Twofish and Serpent [9].
Bit-permutations are a special case ofreversible functions, that is,

�This work was partially supported by the Undergraduate Sum-
mer Research Program at the University of Michigan and by the
DARPA QuIST program. The views and conclusions contained
herein are those of the authors and should not be interpreted as
necessarily representing official policies of endorsements, either
expressed or implied, of the Defense Advanced Research Projects
Agency (DARPA), the Air Force Research Laboratory, or the U.S.
Government.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWLS 2002June 4-7, 2002, New Orleans, Louisiana, USA
Copyright 2002 ACM X-XXXXX-XX-X/XX/XX ... $5.00.

functions that permute the set of possible input values. For exam-
ple, the butterfly operation(a;b)! (a+b;a�b) is reversible but
isn’t a bit permutation. It is a key element of Fast Fourier Trans-
form algorithms and has been used in application-specific proces-
sors from Tensilica. One might expect to get further speed-ups by
adding instructions to allow computation of an arbitrary reversible
function; the problem of chaining such instructions together pro-
vides one motivation for studying reversible logic circuits, that is,
logic circuits composed of gates computing reversible functions.

Reversible circuits are also interesting because the loss of bits
of information implies energy loss [2]. Younis and Knight [18]
showed that some reversible circuits can be made asymptotically
energy-lossless if their delay is allowed to be arbitrarily large. Cur-
rently, energy losses due to irreversibility are dwarfed by the overall
power dissipation, but this may change if Moore’s law holds until
2020 and power dissipation improves [11]. In particular, reversibil-
ity is important for nanotechnologies where switching devices with
gain are difficult to build.

Finally, reversible circuits can be viewed as a special case of
quantum circuits because quantum evolution must be reversible.
Classical (non-quantum) reversible gates are subject to the same
“circuit rules”, whether they operate on classical bits or quantum
states. In fact, popular universal gate libraries for quantum com-
putation often contain, as their subsets, universal gate libraries for
classical reversible computation. While the speed-ups which make
quantum computing attractive are not available without purely quan-
tum gates, logic synthesis for classical reversible circuits is a first
step toward synthesis of quantum circuits. Moreover, algorithms
for quantum communications and cryptography often do not have
classical competitors because they act on quantum states, even if
their action in a given computational basis corresponds to classical
reversible functions on bit-strings. Another connection between
classical and quantum computing comes from “pseudo-classical”
circuits, as used, e.g., in Grover’s search algorithm [4]. These cir-
cuits are close to classical reversible circuits [5] and their definition
involves an arbitrary one-output (irreversible) Boolean function.

We now briefly review existing work on classical reversible cir-
cuits. Toffoli [16] gives constructions for an arbitrary reversible
or irreversible function in terms of a certain gate library. How-
ever, his method makes use of a large (although linear in the input
size) number of temporary storage channels, i.e. input-output wire-
pairs other than those on which the function is computed. Sasao
and Kinoshita show that any conservative function (f (x) is con-
servative if8x, x and f (x) contain the same number of 1s in their
binary expansions) has an implementation with only 3 temporary
storage channels using a certain fixed library of conservative gates,
although no explicit construction was given [12]. Kerntopf uses ex-
haustive search methods to examine small scale synthesis problems

125

and related theoretical questions about reversible circuit synthesis
[6]. Finally, members of the Portland Quantum Logic Group pro-
pose a general heuristic for reversible logic synthesis [11].

Our work pursues synthesis of optimal reversible circuits which
can be implemented without temporary storage channels. In Sec-
tion 3 we show by explicit construction that any reversible function
which performs an even permutation on the input values may be
synthesized using theCNT (CNOT, NOT, TOFFOLI) gate library
under such constraints. In Section 4 we present synthesis algo-
rithms for decomposing such a function into a circuit with a mini-
mal number of gates. Besides branch-and-bound, we use dynamic
programming that exploits reversibility. Empirical results are given
in Section 5, and applications to quantum computing in Section 6.

2. BACKGROUND
In conventional (irreversible) circuit synthesis, one typically starts

with a universal gate library and some specification of a Boolean
function. The goal is to find a logic circuit that implements the
Boolean function and minimizes a given cost metric, e.g., the num-
ber of gates or the circuit depth. At a high level, reversible circuit
synthesis is just a special case in which no fanout is allowed and all
gates must be reversible.

DEFINITION 1. A gate is reversible if the (Boolean) function it
computes is bijective.

A necessary condition is that the gate have the same number of
input and output wires. If it hask, it is called ak� k gate, or a
gate onk wires. We will think of themth input wire and themth
output wire as really being the same wire. Many gates satisfying
these conditions have been examined. We will consider a specific
set, defined by Toffoli [16].

DEFINITION 2. A k-CNOT is a(k+1)� (k+1) gate. It passes
the first k inputs through unchanged, and inverts the last iff the
others are all1. (These gates are all reversible.)

The first three of these have special names. The 0-CNOT is just
an inverter, referred to as a NOT gate. The 1-CNOT, which passes
the first input through and inverts the second if the first input is 1,
is referred to as a CNOT (controlled-NOT). The 2-CNOT is called
a TOFFOLI gate. Together, the NOT, CNOT, and TOFFOLI form
a universal set of gates for classical reversible circuits [16] (we will
be more specific about what this means later). They are also attrac-
tive for quantum computing [10] where additional, purely quantum,
gates are required for universality.

DEFINITION 3. A well-formed reversible logic circuit is an acyclic
combinational logic circuit in which all gates are reversible, and
are interconnected without fanout.

a

b

c

b’

c’

a’

T C N T

a b c a’ b’ c’
0 0 0 0 0 1
0 0 1 0 0 0
0 1 0 0 1 1
0 1 1 0 1 0
1 0 0 1 0 1
1 0 1 1 0 0
1 1 0 1 1 1
1 1 1 1 1 0

(a) (b)

Figure 1: (a) Reversible circuit, (b) the function it implements.

�
�
�

�
�
�

Figure 2: Two reversible circuit equivalences.T(1;2;3) �N(1) �
T(1;2;3) �N(1) =C(2;3), andC(3;2) �C(2;3) �C(3;2) = S(2;3)

We will be working with circuits from a pre-given, limited gate
library. Usually, this will be theCNT gate library, consisting of
the CNOT, NOT, and TOFFOLI gates defined above. Sometimes,
we will take subsets, and speak of, say, theCT gate library. We
will also on occasion add the SWAP gate,S, a 2� 2 gate which
exchanges the inputs; that is,(x;y)! (y;x).

As with reversible gates, a reversible circuit has the same number
of input and output wires; again we will call a reversible circuit with
n inputs ann�n circuit, or a circuit onn wires. We may also draw
an “invisible box” around an�n circuit and think of it as the inner
workings of ann�n reversible gate.

This also allows us to draw reversible circuits as vertical arrays of
horizontal lines (representing wires), in which gates are represented
by vertically oriented symbols. For example, in Figure 1, we see a
reversible circuit drawn in standard notation [10]. The� symbols
represent inverters and the� symbols represent controls. A vertical
line connecting a control to an inverter means that the inverter is
only applied if the wire on which the control is set carries a signal.
Thus, the gates used are (from left to right), TOFFOLI, CNOT,
NOT, TOFFOLI.

The truth table in Figure 1.b is the only truth table appearing
in this paper. Since we will be dealing only with bijective func-
tions fromBk ! Bk, we represent them using thecycle notation,
known from elementary algebra. That way, every permutation is
represented by disjoint cycles of variables. For example, the truth
table in Figure 1 is represented by(0;1)(2;3)(4;5)(6;7) because
the corresponding function swaps 000 (0) and 001 (1), 010 (2) and
011 (3), etc. The set of all permutation ofn letters is denotedSn, so
the set of bijective functions fromBn to itself isS2n .

As the permutation(0;1)(2;3)(4;5)(6;7) may be computed in a
circuit with only gates from theCNT gate library, we will call it
CNT-constructible. More generally:

DEFINITION 4. Let L be a (reversible) gate library. An L-circuit
is a circuit with only gates from L, and a permutationπ 2 S2n is L-
constructible if it may be computed by an n�n L-circuit.

Note that a circuit consisting of just an inverter on thec-c’ line
computes the same function as the circuit in Figure 1. Pairs of
circuits computing the same function are very useful, since we may
substitute one for another. Two more such pairs are given in Figure
2. On the right, we see that threeC gates may be used to replace a
Sgate; on the left we see that theCNT gate library is redundant, in
that we may replace every occurrence of aC gate with twoT gates
and twoN gates. We will still use theCNT gate library in synthesis
to reduce gate counts and potentially speed up synthesis (Figure 2,
shows how to replace 4 gates with oneC gate). In fact, for the same
reason, we will sometimes add theSgate, and consider theCNTS
gate library.

DEFINITION 5. Two reversible circuits are equivalent if they
compute the same function.

The left box in Figure 2 illustrates the use of “temporary stor-
age”. Computing a CNOT usually only takes 2 wires, but if we do

126

it with two NOT gates and two TOFFOLI gates, we need a third
wire. The value of the third wire is irrelevant to the computation,
and emerges unaltered. More generally, consider the general re-
versible circuit of Figure 3. The topn� k lines transfern� k sig-
nalsY to the corresponding wires on the other side of the circuit.
The bottomk go in as the input valueX and emerge as the output
value f (X). These lines often serve as an essential workspace for
computing f (X). Following Toffoli, we say thatC computesf (X)
usingn�k lines of temporary storage [16]. Figure 1 provides an-
other example; the circuit there computes NOTx on thec-c’ wire,
using the top two wires as temporary storage.

We now formally define what it means for a libraryL of re-
versible gates to beuniversal.

DEFINITION 6. Let L be a reversible gate library. Then L is
universal if for all permutationsπ 2S2k (for all k) there exists some
l such that some L-constructible circuit computesπ using l wires of
temporary storage.1

3. THEORETICAL RESULTS
AND HEURISTICS FOR SYNTHESIS

It is a result of Toffoli that theCNT gate library is universal; he
also showed that one may bound the amount of temporary storage
required to compute a permutation inS2n by n�3. We are inter-
ested in trying to synthesize permutations using no extra storage.
As a first step, we would like to know for which permutations this
may actually be done, using a reasonable gate library. Toffoli gave
a negative result in this direction, but to state it we must introduce
the concept of an even permutation.

DEFINITION 7. A permutation is called even if it may be writ-
ten as the product of an even number of transpositions.2 The set of
even permutations in Sn is denoted An, and it is a result of elemen-
tary algebra that half the permutations are even for n> 1.

PROPOSITION 1. Any n� n circuit with no n� n gates com-
putes an even permutation[16].

In particular, since theCNT gate library contains no gates of size
greater than 3, Proposition 1 implies that everyCNT-constructible
permutation is even forn� 4. We now investigate the converse.

PROPOSITION 2. Every even permutation isCNT-constructible.

Proof: It follows from a result of Toffoli [16] that every permu-
tation inS2n is CNT-constructible forn< 4. Supposen� 4. Any

1Note that we do not allow constant signals.
2It is a result from elementary algebra that if a permutation may be
written as the product of an odd number of transpositions, then it
may not be written as an even number of transpositions.

k−1

0
1

k

...

...

k−1
k

...

...

0
1

X

Y Y

C

n−1n−1

f(X)

Figure 3: A reversible circuit with n-k wires of temp. storage.

permutationπ2A2n may be written as the product of disjoint trans-
position pairs. For a proof, consult Proposition 12 in the appendix.
It therefore suffices to show that disjoint transposition pairs are con-
structible, as we may chain together their circuits to obtain the cir-
cuit for π. First, we observe that the permutation with cycle de-
composition(0;1)(2;3) can be computed by a circuit consisting of
a (n�2)-CNOT gate with the controls on the topn�2 wires and
the inverter on the bottom wire, with anN gate on each side of each
control. We may replace the(n�2)-CNOT gate with a linear (in
n) number ofC gates [1].

Let S= fa;b;c;dg with a;b;c;d distinct. In Proposition 13 in the
appendix, we explicitly construct a circuit computing a permutation
πS such thatπS(a) = 0, πS(b) = 1, πS(c) = 2, andπS(d) = 3. Be-
cause(a;b)(c;d) = πS(0;1)(2;3)π�1

S , there is a circuit computing
(a;b)(c;d) by chaining together first a circuit computingπS, then
the circuit computing(0;1)(2;3), and finally a circuit computing
π�1

S .
Finally, if c(π) is the cardinality of the support ofπ, then there

areΘ(nc(π)) gates used in this construction.c(π)< 2n.

The following two corollaries (i) give a way to synthesize circuits
computing odd permutations using temporary storage, and (ii) ex-
tend the result of Proposition 2 to an arbitrary universal gate library.

PROPOSITION 3. If π 2 S2n is any permutation, then we may
computeπ using the CNT gates and one wire of temporary storage.

Proof: Suppose we had an�n gate G computingπ, and we placed
it on the bottomn wires of an(n+1)�(n+1) reversible circuit; let
π̄ be the permutation computed by this new circuit. Then by Propo-
sition 1,π̄ is even, so by Proposition 2,̄π isCNT-constructible. Let
C be aCNT-circuit computingπ̄. Then C computesπ with one line
of temporary storage.

PROPOSITION 4. If L is any universal gate library, then for suf-
ficiently large n, permutations in A2n are L-constructible, and per-
mutations in S2n are computable with one wire of temporary stor-
age.
Proof: SinceL is universal, there is some numberk such that we
may compute the permutations corresponding to the NOT, CNOT,
and TOFFOLI gates using at mostk total wires. Letn> k, and let
π2A2n. By Proposition 2, we may find aCNT-circuitC computing
π; replace every occurrence ofN, C, or T with a circuit computing
it. The second claim follows similarly from Propositions 2, 3.

Since Proposition 2 is proven by an explicit construction, we
may implement it as a circuit synthesis heuristic which produces
(very) suboptimal circuits. For permutations inA2n, the runtime
and the length of the circuits produced are bothO(n2n), suggesting
that this technique should work with circuits of up to approximately
20 inputs.

Later, we describe an algorithm which will synthesize optimal
circuits from an arbitrary gate library. Roughly speaking, the per-
formance of this algorithm is improved by using a smaller gate li-
brary, as long as the average circuit length is not significantly in-
creased. We will show that the inverters in aCNT-circuit may be
pushed to the end of the circuit.3

DEFINITION 8. If L1 : : :Lk are gate libraries, an L1j : : : jLk-circuit
is an L1-circuit followed by a L2-circuit, . . . , followed by an Lk-
circuit. A permutation computed by an L1j : : : jLk circuit is “L 1j : : : jLk-
constructible”.

3This is analogous to pushing all inverters in an AND-OR-NOT
circuit to the inputs by applying De Morgan’s laws.

127

������

������

��������

������ ��������

�
�
�

�
�
�

��������

�
�
�
�

�
�
�
�

������

������

��������

������ ��������

�
�
�
�

�
�
�
�

��������

�
�
�

�
�
�

��������

��������
�
�
�

�
�
� ����������

�
�
�

�
�
�

����������

�������� ����������

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��������

�
�
�
�

�
�
�
� ����������

�
�
�
�

�
�
�
�

��������

�
�
�

�
�
�

�
�
�

�
�
�

��������

����������

����������

������

������
�
�
�

�
�
�

�
�
�

�
�
�

������ ������������

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�������
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

��������

������ ��������

�
�
�

�
�
�

�
�
�

�
�
�

������ ��������

������ ��������

������������

������������

Figure 4: Equivalences between reversible circuits used in our constructions.

PROPOSITION 5. Every CNT-circuit is equivalent to some CTjN-
circuit.
Proof: First, we move all theN gates toward the outputs of the
circuit. Each box in Figure 4-left indicates a way of replacing an
NjCT circuit with aCTjN circuit. Moreover, every possible way
for an N gate to appear to the immediate left of aC or a T is ac-
counted for, up to permuting the input and output wires.

Now, number the non-N gates in the circuit in a reverse topo-
logical order starting from the outputs. In particular, if two gates
appear at the same level in a circuit diagram, they must be indepen-
dent, and one can order them arbitrarily. Letd be the number of the
highest-numbered gate with anN gate to its left. AllN gates past
thed-th gateG may be reordered with theG gate without introduc-
ing newN gates on the other side ofG. In any event, as there are
no remainingN gates to the left ofG anymore,d decreases. This
process terminates with all theN gates are clustered together at the
circuit outputs.

If we make sure to always cancel redundantN gates, then no
more than 2 new gates will be introduced for each non-inverter
originally in the circuit; additionally, there will be no more than
n total N gates when the process is complete. Thus if the original
circuit had l gates, then the new circuit has at most 3(l � 1) + n
gates.

PROPOSITION 6. The permutationπ computed by aCTjN-circuit
uniquely determinesπCT and πN computed by the CT and N sub-
circuits.
Proof: C andT gates (and henceCT-circuits) fix 0. Thusπ(0) =
πN(0). But the image of 0 (or anything else) under anN-circuit
completely determines theπN. ThenπCT = ππ�1

N = ππN.

Thus, if we are looking for aCNT-circuit computing a permuta-
tion π, we may quickly computeπN and then simplify the problem
to that of looking for aCT-circuit computingππN. By Proposi-
tion 5, we know that the gate-minimal circuit of this form has at
most about three times as many gates as the gate-minimal circuit
computingπ.

Given that the pictures in Figure 4-right show how to move aC
gate past aT gate, and account for every possible way aC may
appear to the left of aT (up to permuting wires), one might expect
everyCT circuit to be equivalent to aTjC circuit. This is not the
case. We note that the proof of Proposition 5 in fact requires the
ability to move an arbitrary number ofN gates past any other given
gate, while Figure 4-right only allows us to move 1C gate past a
given T gate. However, manyCT circuits are equivalent toTjC
circuits, and in this case the following result holds:

PROPOSITION 7. The permutationπ computed by a TjC-circuit
uniquely determines permutationsπT and πC computed by the T
and C sub-circuits.
Proof: Any C-circuit is linear [11], so it suffices to check its values
on the basis elements corresponding to the binary expansions of 2i .

As anyT circuit fixes these,π(2i) = πC ÆπT(2i) = πC(2i), so the
permutationπ uniquely determinesπC. πT = ππ�1

C .

Proposition 7 implies, in particular, that the number of permuta-
tions in S2k that areTjC-constructible is equal to the number that
areC-constructible times the number that areT-constructible. In
the results section, we will use this fact to show that there exist
CT-constructible permutations which are notTjC-constructible.

4. OPTIMAL SYNTHESIS
Now that we know which permutations admit circuit realizations

without extra storage, we seekoptimal realizations of this type. A
circuit is optimal if no equivalent circuit has smaller cost; in our
case, the cost function will be the number of gates in the circuit.

PROPOSITION 8. (Property of Optimality) If S is a sub-circuit
of an optimal circuit C, then S is optimal.
Proof: Suppose not. Then letS0 be a circuit smaller (in the number
of gates) thanS, but computing the same function. If we replaceS
by S0, we get another circuitC0 which computes the same function
asC. But since we have only modifiedS, we must have thatC0 is
as much smaller thanC asS0 is smaller thanS. However,C was
assumed to be optimal, hence this is a contradiction. Note: there
may be many equivalent circuits with the same number of gates as
S.

We will use an iterative-deepening A* (IDA*) search procedure
[7] to find an optimal circuit computing a given permutation. An
IDA* algorithm first examines possible solutions of cost 1, then
possible solutions of cost 2, and so on. Pseudo-code for the IDA*
framework of the algorithm is given in Figure 5. Once a circuit
is found, it must be optimal since we have examined all smaller
circuits already. We will use the property of optimality to speed up
search.

CIRCUIT synthesize(PERM)
f
if (PERM==IDENTITY) return EMPTY CCT;
// otherwise, use IDA* to find a circuit.
for(DEPTH 1, DEPTH < MAXDEPTH; DEPTH++)
f
CIRCUIT find circ(DEPTH, PERM, EMPTY CCT);
if (CIRCUIT != NIL) return CIRCUIT;
g

g

Figure 5: Finding an optimal circuit computing permuta-
tion PERM. Returned value NIL means “not found”. See
find circ() in Figure 6.

We know that the firstk gates of an optimal circuit of costn must
form an optimal circuit. So, fixingk in advance, we extend the
gate library into a “circuit library” of optimal circuits of costk or

128

CIRCUIT find circ(COST, PERM, CURR CCT)
f
if (COST � k)

// if PERM can be computed by a circuit
// with fewer at most k gates,
// such a circuit must be in the library
return CURR CCT + LIB[DEPTH].find(PERM));

else
// The goal circuit must have >k gates;
// Try constructing it from k-gate circuits
for each C in LIB[k]
f

// divide PERM by permutation computed by C
PERM2 PERM * INVERSE(C.perm)
// and try to synthesize the result
TEMPCCT find circ(depth-k,PERM2));
if (TEMP CCT != NIL) return TEMP CCT;

g
g

Figure 6: Finding a circuit of cost �COST or less that com-
putes permutation PERM (NIL returned if no such circuit ex-
ists). CURR CCT, TEMP CCT and records in LIB represent
circuits, and include a field “perm” storing the permutation
computed. The * character means concatenation of circuits,
and NIL*anything=NIL.

less, and store them in an array LIB such that LIB[d] is a collec-
tion of d-gate circuits. Then, to find a circuit of costn computing
a given permutation, we iterate through optimal circuits of costk,
and for each we recursively look for an optimal circuit of costn�k
that, together with the current circuit of costk, computes the de-
sired permutation. Ifn�k is k or less, we look in our circuit library
to check if the desired circuit exists. Pseudo-code is given in Fig-
ure 6. For any complete gate library IDA*-search terminates if and
only if a circuit computing the desired function exists (the exis-
tence problem is addressed in Section 3). Therefore, our algorithm
needs an additional termination condition that would prevent infi-
nite looping if no solution exists. In general, we can stop the search
procedure at some fixed cost, but if the total number of optimal
circuits that may be synthesized with a given gate library is small
enough to be stored in memory, we use a different approach. We
store all permutations for which our algorithm finds circuits along
the way. Suppose we discover that there are no optimal circuits
of cost n (for somen). Then the property of optimality implies
that any circuit withn gates or larger is suboptimal, and we may
stop looking. Note that if a permutation is not synthesizable, this
termination condition will trigger sooner or later. That is because
there are only finitely many synthesizable permutations onw wires,
versus infinitely many circuits onw wires.

Generating the circuit library may be done in the following fash-
ion. We begin with a library of maximum cost 1, since this is just
a gate library. To generate the library of maximum costk+1 from
a library with maximum costk, it suffices to iterate through the op-
timal circuits of costk and, for each, try each way of appending a
gate to the end. By the property of optimality, this examines every
optimal circuit of lengthk+1.

5. EMPIRICAL RESULTS FOR
CLASSICAL REVERSIBLE CIRCUITS

We may use the algorithm explained in the previous section to
find the length of the optimal circuit computing some given permu-
tation. Doing this for all permutations which may be computed on,
say, three wires, we can determine the distribution of optimal cir-

Size N C T NC CT NT CNT CNTS
12 0 0 0 0 0 47 0 0
11 0 0 0 0 0 1690 0 0
10 0 0 0 0 0 8363 0 0
9 0 0 0 0 0 12237 0 0
8 0 0 0 0 6 9339 577 32
7 0 0 0 14 386 5097 10253 6817
6 0 2 0 215 1688 2262 17049 17531
5 0 24 0 474 1784 870 8921 11194
4 0 60 5 393 845 296 2780 3752
3 1 51 9 187 261 88 625 844
2 3 24 6 51 60 24 102 134
1 3 6 3 9 9 6 12 15
0 1 1 1 1 1 1 1 1

Total 8 168 24 1344 5040 40320 40320 40320
Time, s � 0 � 0 � 0 30 215 97 40 15

Table 1: Size distribution of optimal 3-wire L-circuits, for sub-
setsL of the CNTSgate library. Runtimes are given for 2GHz
Pentium-4 Xeon.

cuit sizes. For example, Table 1 lists the number ofL-constructible
permutations for various subsetsL of theCNT Sgate library.

While we cannot theoretically validate every entry of Table 1,
we can check the totals. Every reversible function on 3 wires can
be synthesized using theCNT gate library [16], and there are 8!=
40320 of these. All those can be synthesized with theNT library
because theC gate is redundant in theCNT library (Figure 2 shows
how to replace aC gate with twoN and twoT gates). On the other
hand, adding theSgate to the library cannot decrease the number of
synthesizable functions. Therefore, the totals in theNT andCNTS
columns must be 40320 as well.

On the other side of the table, the number of possibleN circuits
is just 23 = 8 since there are three wires, and there may be at most
oneN gate per wire in an optimal circuit (since otherwise we may
cancel redundant pairs.) By Propositions 5 and 6, the number of
NC-constructible permutations should be the product of the number
of N-constructible permutations and the number ofC constructible
permutations, since anyNC-constructible permutation may be writ-
ten uniquely as a product of anN constructible permutation and a
C constructible permutation. So the total in theNC column should
be the product of the totals in theC andN columns, which it is.
Similarly, the total in theCNT column should be the product of
the totals in theCT andN columns; this would allow us to deduce
the total number ofCT-constructible permutations from values we
know.

Finally, it is possible to show that the number of permutations
implementable onn wires withC gates only is∏n�1

i=0 (2
n�2i). For

n = 3 this formula gives 168 and agrees with Table 1. To derive
this formula, observe that theC gate defines a linear transforma-
tion over the two-element fieldF2. This means that if we apply an
n-wire circuit consisting of oneC gate to two sets of input values,
then the bit-wise� of the outputs equals the output of the circuit
on the bit-wise� of the inputs. This leads us to consider 2n�2n

matrices with 0-1 entries because they can capture linear operators
overF2. SinceC gates are invertible, we also require that all matri-
ces be reversible. In algebra this matrix group is denotedGLn(F2)
[11]. It turns out that theC-constructible permutations bijectively
correspond to matrices inGLn(F2). To produce the counting for-
mula above, observe that a linear mapping is fully defined by its
values on basis vectors. There are 2n�1 ways of mapping the 2n-
bit-string 10:::0. Once we fixed its image, there are 2n�2 ways of
mapping 010:::0, and so on. Each time we map one of these ba-
sis bit-strings it can’t map to the subspace spanned by the previous

129

bit-strings. This is why we have 2n�2i choices for thei-th basis
bit-string. Once all basis bit-strings are mapped, the mapping of
the rest is specified by linearity.

We observed that the longest optimalC-circuits on 3, 4 and 5
wires merely permute the wires. Our experimental data supports
the conjecture that no optimalC-circuit on n wires has more than
3(n� 1) gates, and the ones with 3(n� 1) gates represent wire
permutations that leave no wire fixed. However, an information-
theoretic counting argument shows that the optimal gate count in an
optimalC-circuit is at leastO(n2=log(n)). This asymptotic bound
is produced by comparing the number of uniqueC-circuits onn
wires and the number of circuits formed by chains of up tod C
gates [13]. Since this non-constructive argument is based on count-
ing, finding some worst-case circuits and describing families with
worst-case asymptotics remains an interesting challenge.

Since wire-swaps require three gates from theCNT library, we
tried adding the swap gate, S, to our gate library. On average, cir-
cuit sizes only improved by one gate. On a 2GHz Pentium-4 Xeon,
if we do not make use of a circuit library generating the Table 1 is
not possible in many hours. Generating a circuit library up to three
gates (k = 3) takes less than a minute, and all of Table 1 can be
generated in minutes.

Although it is unrealistic to produce complete statistics for 4-
wire functions (there are 16! of them), average synthesis times for
takes less than a second when the input function can be imple-
mented in 8 gates or less (in this case, our circuit library contains
optimal circuits with up to 4 gates). CNT-constructible functions
requiring 9 or more gates have been observed to take at least 1.5
hours to synthesize. The reason for the large jump after the 8 gate
mark is that this is when the recursion starts having to go 3 levels
deep. Improving the way the circuit library is stored would improve
performance, but, it is unrealistic to expect optimal synthesis meth-
ods to scale very far. This algorithm does, however, scale better
than its irreversible counterparts [8], primarily because application
of the property of optimality to the reversible case is much more
straightforward.

6. QUANTUM COMPUTING APPLICATIONS
This section presumes some familiarity with quantum computing

not required elsewhere in the paper. Background can be found in
the book [10] by Nielsen and Chuang. Grover’s search algorithm is
a quantum algorithm that allows one to searchN unordered items in
O(
p

N) time, where the desired items are identified by a Boolean
predicate. This improves upon the best possible asymptotics for
classical computation, which isO(N).

Grover’s search uses a quantum circuit that flips the sign of those
states in the computational basis that satisfy the predicate, and leaves
all other states unchanged. Quantum states in the computational ba-
sis can be thought of as strings ofN bits. If f is a Boolean function
that evaluates to 1 on desired basis states and 0 on other basis states,
the circuit needs to change an arbitrary basis statejxi to the state
(�1) f (x)jxi. Such a circuit computes a transformation given by a
diagonal matrix with entries�1 and can be synthesized from basic
gates for quantum computation [5].

Most works on Grover’s algorithm do not address the synthesis
of the above quantum circuits defined by Boolean functionsf . Ac-
cording to Bettelli et al. [3], this is a major obstacle for automatic
compilation of C++-like quantum programs, and no solutions are
known.

PROPOSITION 9. The problem of synthesizing a quantum cir-
cuit that transforms computational basis statesjxi to (�1) f (x)jxi
can be reduced to a problem in the synthesis of classical reversible

Circuit Size 0 1 2 3 4 5 6 7 Total
#circuits of that size 1 7 21 35 35 24 4 1 128

Table 3: Optimal 3+1 oracle circuits for Grover’s search algo-
rithm.

circuits [5].
Proof: Define the permutation̂f by f̂ (x;y) = (x;y� f (x)), and de-
fine a unitary operatorUf by letting it permute the states of the
computational basis according tôf . An additional qubit (wire)
is initialized to the statej�i = 1p

2
(j0i� j1i) so thatUf jx;�i =

(�1) f (x)jx;�i If we now ignore the value of the last qubit, the sys-
tem is in the state(�1) f (x)jxi, which is exactly the state needed
for Grover’s algorithm. Since a quantum operator is completely
determined by its behavior on a given computational basis, any cir-
cuit implementingf̂ implementsUf . In particular, since reversible
gates may be implemented with quantum technology, we may syn-
thesizeUf as a reversible logic circuit.

We are interested in circuits for such functions, therefore we first
question whether̂f is CNT-constructible, i.e., whether the permu-
tation f̂ is even. Sincef̂ swaps(x;y) with (x;y� f (x)), it may
be written as a product of #fx : f (x) = 1g transpositions. Thuŝf
is even iff this set has even cardinality, which is true for 50% of
functions f .

Given aCNT-constructiblef̂ , we can use the algorithm given in
Section 4 to find the smallest circuit taking this form. Figure 3 gives
the optimal circuit sizes of functionŝf corresponding to 3-input 1-
output functionsf (we call such functions “3+1 oracles” because
they operate on four wires). These circuits are significantly smaller
than many optimal circuits on four wires. This is not surprising, as
they perform less computation.

In Grover oracle circuits the main input lines preserve their input
values and only the temporary storage lines may change their val-
ues. Therefore Travaglione et al. [17] studied circuits where some
lines cannot be changed even at intermediate stages of computa-
tion. In their terminology, a circuit withk lines that we are allowed
to modify and an arbitrary number of read-only lines is called a
k-bit ROM-based circuit. They show how to compute permutation
f̂ arising from a Boolean functionf using a 1-bit quantum ROM-
based circuit, and prove that if only classical gates are allowed, two
writable bits are necessary. Two bits are sufficient if theCNT gate
library is used. Their synthesis algorithms rely on EXOR-SUM
decompositions off . We state their result and outline their con-
struction.

PROPOSITION 10. Given an EXOR-SUM decomposition of a
function f , we may synthesize a reversible 2-bit ROM based CNT-
circuit computing(x;a;b)! (x;a;b� f (x)), where x is a k bit input
[17].
Proof: It suffices to know how to transform(x;a;b)! (x;a;b� p)
for an arbitrary product of uncomplemented literalsp; because then
we may add the terms in an EXOR-SUM decomposition term by
term. So, without the loss of generality, letp= x1 : : :xm.

Denote byT(a;b;c) a T gate with controls ona;b and inverter
on c. Similarly, denote byC(a;b) a C gate with control ona and
inverter onb. Number the ROM wires 1: : :k, and the non-ROM
wiresk+1 andk+2. Let us first suppose that there is at least one
uncomplemented literal, and put aC(1;k+2) on the circuit; note
thatC(1;k+2) applied to the input(x;a;b) gives(x;a;b�x1). We
will write this asC(1;k+2) : (x;a;b)! (x;a;b� x1), and denote
this operation byV1. Then, we define the circuitV 0

2 as the sequence

130

Size 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
Exor 1 4 6 4 4 12 18 12 6 12 19 16 10 8 10 16 19 12 6 12 18 12 4 4 6 4 1
Opt T 1 4 6 4 4 12 21 24 29 33 44 46 22 5 1 0 0 0 0 0 0 0 0 0 0 0 0
Opt 1 7 21 35 36 28 28 36 35 21 7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 2: Circuit size distribution of 3+2 ROM based circuits synthesized using various algorithms.

of gatesT(2;k+2;k+1)V0T(2;k+2;k+1)V0, and one may check
thatV 0

2 : (x;a;b)! (x;a�x1x2;b). We defineV2 by exchanging the
wiresk+1 andk+2; clearlyV2 : (x;a;b)! (x;a;b�x1x2).

More generally, given a circuitVl : (x;a;b�x1 : : :xl�1)! (x;a�
x1 : : :xl), we defineV 0

l+1 :=T(l+1;k+2;k+1)Vl T(l+1;k+2;k+
1)Vl ; one may check thatV 0

l+1 : (x;a;b) ! (x;a� x1 : : :xl+1;b).
DefineVl+1 by exchanging the wiresk+1 andk+2; then clearly
Vl+1 : (x;a;b)! (x;a;b� x1 : : :x1+1). By induction, we may get
as many uncomplemented literals in this product as we like.

A careful count of the number of gates used yields the following.

PROPOSITION 11. If a function’s EXOR-SUM decomposition
consists of only one term, let k be the number of literals appearing
(without complementation) If k> 0 then there will be3 �2k�1�2
gates.

We applied the above construction [17] to all 256 functions im-
plementable in 2-bit ROM based circuits with 3 bits of ROM. The
circuit size distribution is given in the line labeled “Exor” in Table
2. That is compared with optimal circuit sizes produced by the al-
gorithm from Section 4. The line “Opt T” gives the size distribution
of circuits synthesized under the restriction [17] that� 1 control bit
per gate be on a ROM bit, which is observed by the EXOR-SUM
based heuristic. This is why8 j the sum of the firstj numbers in
the “Opt T” line is� than that in the “Exor” line. Travaglione et al
[17] mention that their results do not depend on the above restric-
tion, and the “Opt” line of Table 2 relaxes it.

The “Exor” line of Table 2 took�2 minutes to generate. Using a
circuit library with up to 6 gates (191Mb file, 1.5 min to produce),
the “Opt” line took� 5 minutes to generate. Using a 5-gate library
improved the runtimes by at least 2x if we do not synthesize the
only circuit of size 11. To produce the results in the “Opt T” line,
we first found (in 15 min) the 250 optimal circuits of size 12 and
less using a 6-gate library (61Mb, 5min). The remaining 6 func-
tions were synthesized in 5 min using a 7-gate library (376Mb, 10
min). This required>1Gb or RAM.

Although most functions computable by a 2-bit ROM-based cir-
cuit actually require 2 bits [17], there is a simple algorithm for de-
termining if a function may be computed by a 1-bit ROM-based
CNT-circuit, and find an optimal circuit if so. It is facilitated by
the observation that gates in the circuit may be reordered any way
we like, as no gate affects the inputs to the control-bits of any other
gate. This means that any given gate will flip the output bit, or not,
depending only on the original value of the input bits. Every gate
in theCNT library is involutive, so there can be at most one copy
of each gate applied to a given subset of wires. Thus, to synthe-
size the given permutation, we simply check its value on each input
combination with 0, 1, or 2 ones in its binary expansion (again, we
have relaxed the restriction that only 1 control may be on a ROM
wire). If the value of the function is 1, the circuit must have aN,
C or T gate controlled by those bits. Note that this gives a way of
determining if a given permutation can be synthesized by a 1-bit
ROM-basedCNT-circuit.

In the case ofk+ 1 ROM synthesis, it is clear that adding the
S gate to the gate library will never decrease circuit sizes: no two

wires may be swapped since at least one of them is a ROM wire.
In the case ofk+2 ROM synthesis, it is at least intuitively plausi-
ble that the same will be true, as if two wires are to be swapped,
they have to be the two non-ROM wires – one of which must be re-
turned to its initial value by the end of the computation. We ran an
experiment comparing circuit lengths in the 3+2 ROM based case
and found no improvement in circuit sizes upon adding theSgate,
however we have been unable to prove this in general.

7. CONCLUSIONS
Reversible circuits have numerous applications, from cryptogra-

phy to subroutines of quantum algorithms. In this work, we study
optimal and heuristic synthesis methods of reversible circuits using
no temporary storage. We show constructively that all even per-
mutations can be synthesized in this manner, and propose heuristic
algorithms for synthesis. We give circuit equivalences which are
useful to push NOT gates to one end of the circuit, and possibly
for future research on optimization heuristics. We describe an al-
gorithm for the synthesis of optimal circuits, and demonstrate its
application to Grover’s search in quantum computing.

8. REFERENCES
[1] A. Barenco et al., “Elementary Gates For Quantum

Computation”,Physical Review A52, 1995, pp. 3457-3467.
[2] C. Bennett, “Logical Reversibility of Computation”,IBM J.

of Research and Development, 17, 1973, pp. 525-532.
[3] S. Bettelli, L. Serafini and T. Calarco, “Toward an

Architecture for Quantum Programming”, Nov. 2001
(version 2), http://arxiv.org/abs/cs.PL/0103009.

[4] L. K. Grover, “A Framework For Fast Quantum Mechanical
Algorithms”, ACM Symp. on Theory of Computing (STOC),
1998.

[5] T. Hogg et al., “Tools for Quantum Algorithms”,
http://arxiv.org/abs/quant-ph/9811073, 1998.

[6] P. Kerntopf, “A Comparison of Logical Efficiency of
Reversible and Conventional Gates”,IWLS 2000, pp.
261-269.

[7] R. Korf, “Artificial Intelligence Search Algorithms”,
Algorithms and Theory of Computation Handbook, CRC
Press, 1999.

[8] E. Lawler, “An Approach to Multilevel Boolean
Minimization”, J. of ACM,11, No. 3, July 1964, pp.
283-295.

[9] John P. McGregor and Ruby B. Lee, “Architectural
Enhancements for Fast Subword Permutations with
Repetitions in Cryptographic Applications,”Proc. of ICCD
2001, Sept. 2001, pp. 453-461.

[10] M. Nielsen and I. Chuang,Quantum Computation and
Quantum Information, Cambridge Univ. Press, Sept. 2000.

[11] M. Perkowski et al., “A General Decomposition For
Reversible Logic”,Reed-Muller Workshop, Aug. 2001.

[12] T. Sasao, K. Kinoshita, “Conservative Logic Elements and
Their Universality,”IEEE Trans. on Computers, 28, ’79, pp.
682-685.

131

[13] T. Silke, “PROBLEM: register swap”, December 1995,
http://www.mathematik.uni-bielefeld.de/
˜silke/PROBLEMS/bit swap

[14] B. Steinbach and A. Mishchenko, “A New Approach to
Exact ESOP Minimization”,Proc. Reed-Muller Workshop,
August 2001, Starkville, Mississippi, pp. 66-81.

[15] Z. Shi and R. Lee, “Bit Permutation Instructions for
Accelerating Software Cryptography”,IEEE Intl. Conf. on
Application-specific Systems, Architectures, and Processors,
July 2000, pp. 138-148.

[16] T. Toffoli, ”Reversible Computing”,Tech. Memo
MIT/LCS/TM-151, MIT Lab for Comp. Sci, 1980.

[17] B. Travaglione, M. Nielsen, H. Wiseman, A. Ambainis,
“ROM-based computation: Quantum Versus Classical”,
2001.
http://arxiv.org/abs/quant-ph/0109016

[18] S. Younis and T. Knight, “Asymptotically Zero Energy
Split-Level Charge Recovery Logic,”Workshop on Low
Power Design, 1994.

Appendix
Below we state and prove technical results used in Section 3.

PROPOSITION 12. For n� 5, we may write any permutation in
An as the product of no more than n pairs of disjoint transpositions.

Proof: Fix π 2 An. Then take the cycle decomposition ofπ and
decompose each cycle into transpositions to writeπ as a product
of c(π) � n transpositions. Sinceπ is even, we knowc(π) = 2k
for somek. Pair up the 2i-th and(2i +1)-st transpositions. Some
of these pairs may not be disjoint, but sincen� 5 we may write
(a;b)(a;c) = (a;b)(d;e)(d;e)(a;c) whered 6= e are distinct from
a;b;c. Thus breaking up non-disjoint pairs, we writeπ as a product
of 2k= c(π)� n pairs of transpositions.

PROPOSITION 13. Let n� 4, and a;b;c;d be distinct integers
between0 and n�1. Then there exists a constructable permutation
π 2 A2n such thatπ(a) = 0, π(b) = 1, π(c) = 2, andπ(d) = 3. It
takes at most2n N gates,4(n+1)C gates, and2(n�2) T gates.
Proof: Start with an empty circuit and placeN gates on every line
corresponding to a 1 in the binary expansion ofa. Let π0 be the
permutation performed by the circuit so far;π0(a) = 0.

Sinceb 6= a, so π0(b) 6= 0 and thereforeπ0(b) has at least one
1 in its binary expansion. Say it’s on theh-th line; then usingC
gates controlled on theh-th line, flip any other non-zero bits of
b0. Finally, if h 6= 1, swap theh-th bit and the 0th bit4. Let π1 be
the permutation performed by the circuit so far. by construction,
π1(b) = 1, and sinceC gates fix 0, we haveπ1(a) = π0(a) = 0.

As before,c 6= b;a =) π1(c) 6= 1;0 henceπ1(c) has a 1 some-
where in its binary expansion other than the lowest bit, say in the
k-th bit. Using the algorithm of the previous paragraph, flip every
other bit to 0 and then swap thek-th and 2-nd bit; we note that
again we have not affected 0, and none of ourC gates have been
controlled on the bottom line, we cannot move 1. The permutation
π2 performed by the circuit thus far has the property thatπ2(c) = 2,
π2(b) = 1, π2(a) = 0.

Finally, observe thatπ2(d) � 3; if it is in fact 3 then we are
done, if not then we haveπ2(d) � 4, and some bit in the binary
expansion ofπ2(d) other than the lowest two bits must be 1; let it
be them-th bit. Then usingC gates controlled them-th bit, flip the

4This may always be done using 3C gates. In this case, since we
know that the bottom bit is 0 and theh-th bit is 1, we need only 2.

bottom two wires to 1 if necessary, and useT gates controlled on
these bottom two bits to clear off the rest of the wires. We are now
done, as none of these gates affect 0;1;2, and this subcircuit sends
π2(d)! 3. A careful count of the gates used verifies the final claim
of the proposition.

132

