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ABSTRACT rithm is described in Section 3. In Section 4 we introduce BCP into

Many leading-edge SAT solvers are based on the Davis-Putnam proggmpre_ssed-BFS. Empiri.cal results are presen_ted ‘T‘ Secti_on 5, while
dure or the Davis-Logemann-Loveland procedure, and thus on uné;(ﬂrjclusmns and our ongoing research are described in Section 6.
isfiable instances they can be viewed as attempting to find refutations

by resolution. Therefore, exponential lower bounds on the length 31‘- BACKGROUND

resolution proofs also apply to such solvers. Empirical performance ofLetV = {vq,v»,...,v,} be a set of Boolean variables.tuth assign-
DLL-based solvers on SAT instances from the pigeonhole and Urquhaéntfor V is a mapping :V — {0,1}. For any variables € V, letv and
family are consistent with this expectation. v be callediterals. A clauseis a set of literals. A clause matisfiedby

Our work explores an entirely different approach to SAT solving that truth assignmertif at least one of its literals is true underA clause
does not have this drawback. A bare-bones implementation of our algosaid to beviolatedby a truth assignmentif all of its literals are false
rithm, reported earlier, was able to refute pigeonhole instances in poljrdert. A Boolean formula in conjunctive normal form (CNF) can be
nomial time without explicitly using symmetries, and this empirical rerepresented by a sétof clauses.
sult is backed up by an analytical proof. In this work, we show how The implicit representation used in the Compressed-BFS algorithm
to extend Compressed-BFS to perform Boolean Constraint Propagatigrdependent on the correspondence between valid partial truth assign-
part of all practical, complete SAT solvers. Unlike DLL-based solverspents and sets of clauses. Given a set of Boolean varighlapartial
our empirical results show that full BCP offers marginal improvementguth assignmentor V assigns values only to some subset of variables
in runtime. V' CV. A partial truth assignment isvalid if it violates some clause.

Given a valid partial truth assignmeintwe can classify clauses in a
1. INTRODUCTION CNF with respect to as follows.

State-of-the-art, complete SAT solvers are usually based on the Davis-
Logemann-Loveland (DLL) search procedure [8]. DLL is a backtrack-
ing algorithm with several extensions, but its runtime on unsatisfiable in-
stances is bounded from below by the length of resolution proofs. This
fact can be combined with known exponential lower bounds for reso- e Activatedclauses have at least one literal assigned.
lution proofs of certain SAT instance families, such as the pigeonhole
instancesiole-n ). [9, 5, 17]. The result is that any implementation

of the DLL algorithm must require exponential time to reflt@le-n g jllustrate the correspondence between setspehclauses and valid

instances [S]. Indeed, the leading-edge SAT solvers Chaff [12] apgtial truth assignments, it is helpful to consider an example.
GRASP [15] empirically take exponential time on these instances. In

addition theOBDD-applyapproach to SAT must also take exponential (a+c+d)(b+e+f)(d+e)(g+h)
time on pigeonhole instances [5]. Tﬂ?

Recent practical work in SAT has primarily focused on implementa-
tion details used for the DLL procedure; a different avenue of research idVe will view this example from the context of a Breadth-First Search:
to look for new SAT algorithms whose complexity is not lower-boundedll valid partial truth assignments we will consider will be to the same
by resolution. Put differently, we are searching for SAT solvers whicdet of variables. Assume that in this valid partial truth assignment, vari-
lead to different classes of tractable SAT instances. To this end, we paibtes{a,b,c,d} have been assigned values. Immediately we know that
out that the recently reported Compressed-BFS algorithm [13] empilause 4 isot activated and also that clause 1 ssitisfied This is true
cally solves pigeonhole instancd®(e-n ) in polynomial time. This since we are considering a valid assignment, and all literals of clause
observation is supported by an analytical proof [14]. While we do ndthave been assigned values. Then this clause must be satisfied by our
claim resolution is subsumed by Compressed-BFS, there is an infiragsignment. The only clauses in which the actual values assigned matter
family of instances where Compressed-BFS exponentially outperforar® thosen the cut clauses, 2 and 3. Thesat clauses straddle a con-
resolution, and thus lower-bounds based on resolution do not apply. ceptual vertical line separating assigned variables from unassigned ones

While the original implementation, Cassatt [13], efficiently solveas shown in Figure 1.
only some classes of benchmarks, we believe that this is not a fundaNow consider the specific valid partial assignmemfiven by {a =
mental limitation. Highly refined DLL implementations contain manyl,b = 0,c = 1,d = 0}. Given a specific assignment, we can determine
performance enhancing features which do not directly translate to thikich clauses in theutareopenand which clauses asatisfied Clause
type of search used in Compressed-BFS. In this work, we observe thas satisfied by, while clause 3 remainspen Since clause 3 has only
Boolean Constraint Propagation (BCP) is an integral feature of maoge free literal, it is in factinit. Note that only clauses in treut have
complete SAT solvers, and develop itin the context of Compressed-BR$e potential to be open or unit clauses.

The remaining part of this paper is organized as follows. SectionOur algorithm relies on the fact that there is a correspondence be-
2 reviews the necessary background, while the Compressed-BFS atg@en avalid partial truth assignmerdnd a set obpenclauses. Storing

e Openclauses have at least one literal assigned, and no literals true.

e Satisfiedclauses have at least one literal assigned true.

¢ Unit clauses have all but one literal assigned, and are open.
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(d+e) 2.2 Boolean Constraint Propagation

(b + etf) Given a valid partial truth assignment to some variables in a CNF
(a+ c+d)  (g+h) instance, we may often easily infer additional information about any so-
j lution based on this assignment. One way of doing this is to loouridr
abcdefgh clauses under this truth assignment; if a clause has all literals except one

set false, then in order to satisfy this clause we must set the remaining
literal true. Recursive application of thisit clause ruleforms the ba-
Figure 1: Classification of Clauses sis of Boolean Constraint Propagation (BCP) within the context of DLL
algorithms for satisfiability.
DLL performs a backtracking, depth-first search over the solution
subsets obpenclauses instead of explicit partial truth assignments ipace of variable assignments. Thus it is natural after branching on a
enough information to perform a BFS and determine satisfiability ofgiven variable to use BCP to force the assignment of as many variables
formula. Within the context of the Compressed-BFS algorithm, this caks possible, and to immediately deduce conflicts a given assignment may
lection of subsets afpenclauses is called thigont. create. However with regard to the Compressed-BFS algorithm, it is not
. .. ) as straightforward to apply this rule to prune branches of the search. We
2.1 Zero-Suppressed Binary Decision Diagrams il later show how it is possible to use the unit clause rule to deduce
A Binary Decision Diagram is defined to be a directed acyclic gragtonflicts within this framework.
(DAG) with two sink nodes. Each non-sink node has in this graph has
a unique label, an integer index, and two outgoing edges. One outgo®g THE COMPRESSED-BFS ALGORITHM
edge gets the label 1, while the other outgoing edge gets the label 0. Eacfy,g e of a compressed container in algorithms for solving satisfi-
outgping edge can connect only to child nodes at lower levels. Beca%ﬂity has been explored in many ways before our Compressed-BFS.
of this we can represent each nodes a 3-tupleX(n, Xr, Xg) wheren  comhining the DP procedure with Zero-Suppressed Binary Decision
is the index c_Jf the nodX, Xt is the node reached after traversing the 1Diagrams (ZDDs) was explored in the ZRes solver [7]. Using ZDDs to
edge, an&e is the node reached after traversing the 0-edge. ThroughQyl o the DLL procedure was explored recently as well [3]. The idea
this work, diagrams will use a solid line to indicate a node’s 1-edge, a thnd the Compressed-BFS algorithm [13] was to leverage the com-

a dashed line to indicate a node’s 0-edge. Each path in the DAG endgigssion power of ZDDs to mitigate the main shortcoming of Breadth-
one of two sink nodes, th&énode and thd node. In addition, there is a First Search: memory utilization.

singlt_a root node. The semantics of BDD can be defined recursively byCompressed-BFS proceeds analogously to a BFS. It processes vari-
defining the semantics of a given node. . . ables according to a static order, and implicitly represents all promis-
A BDD can be used to encode a collection of sets by encoding % tr,th assignments of a given depth These valid partial truth as-
collection’s characteristic function. We can evaluate a function repr&gnments are assighments to varialgso, ..., xg which do not cause
sented by a BDD by traversing the DAG beginning at the root nodgy jiterals in some clause to be assigned false. The collection of these
At each nodeX, if the variable corresponding to the indexXfis true,  oaria) truth assignments is called the front. To determine the proper
we traverse along the 1-edge. Otherwise we traverse along the O'e@%e after processing variabdg, 1, the algorithm ‘copies’ the front, and
Eventually we will reach eithed or 1, indicating the value of the func- 1, jifies one copy of each assignment within this collection to reflect the
tion on this input. For Zero-Suppressed Binary Decision Diagrams, Wjitional assignment afj..1 = 1. It modifies the other copy of the front
augment this with th&ero-Suppression Ruleve may eliminate nodes , reflect assigningg, 1 = 0. Finally, all valid partial truth assignments
whose 1-edge leads @ With these standard ZDD rules, itis not hard, isinq from either of these branches might yield satisfiability, so both
to see thad represents the empty collection of sets, whilepresents -0 hac are combined into the single new front.
the coIIe<_:t|on con5|st|n_g of only the empty set. . Rather than store explicit truth assignments, Compressed-BFS stores
ZDDs interpreted this way have a standard set of operations baseqia g hsets of open clauses corresponding to these assignments in the
recursive definitions [10], including the union and intersection of Weont. By combining this front with a new truth assignment to a single
collections of sets, for example. These ZDD procedures form the buildyapie the front can be advanced as described above. To update the
ing blocks of the Compressed-BFS algorithm, and are implementedqif; (5 reflect a truth assignment to a single variable, the effects of this
several publicly available BDD/ZDD libraries [16, 11]. We review iy assignment on the status of clauses must be considered. In gen-
formal definitions of some of the lesser-known ZDD procedures usedq 5| a5 assighment to a single variakle- t (wheret € {0,1}) has the

. . . . ) following effects on clauses.
e Existential Abstraction. Given a ZDDF, and a set of variables

S, remove all occurrences sfe Sfrom any subset iff. This can o It violatessome clauses. Leily : be the set olinit clauses for
be implemented by cofactorirfg with respect ts= 1 ands=0, which this variable assignment causes a conflict. Then, any subset
then forming the union of these results[11]. in thefront containing somel € Uy, must be pruned as it cannot
yield satisfiability. This can be accomplished with an appropriate
e Subsumed Difference.Given two ZDDs,F andG, form a ZDD ZDD intersection operation.

F \sG containing all subsets frof which are not subsumed by

. It satisfiessome clauses. L& ; be the set of all clauses which
some subset ifs [6]. . St

contain a literal in{x;,X} andx =t makes this literal true. If
these clauses were not yet satisfied, then they become satisfied by
this assignment. These clauses are removed from all subsets in
thefront by ZDD existential abstraction

e PowerSet. Given a setS create a ZDD2® which contains all
subsets o6 Such a ZDD will require exactly§ nodes.

The Subsumed Differend®] operation can be extended into other e It openssome clauses. Léeky be the set of all clauses which
operations, allowing one to maintain a subsumption-free ZDD. Removal  werenot activated contain a literal in{x;,x}, andx; =t makes
of subsumptions in some way is crucial to achieving performance within  this literalfalse If this literal were assigned true, the clause would
the Compressed-BFS algorithm. not becomepenand not be needed to added to flamt. All such
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clausesAy + are added to every subset in thent by the zDD 3.1  Opportunistic Subsumption Removal

Compressed-BF$vars Clause}
Front« 1
for i = 1to|Varg do
front’ < front
/IModify front to reflect x=1
Formsets Y 1,5 1,Ax 1
front « front N 2C1ausesUy 1
front <— JAbstract(front, S 1)
front < front@Ay, 1
/IModify front’ to reflect x=0
Form sets U 0,S.0,Ax .0
front' « front’ ) 2C1ausesUx.o
front’ <— JAbstract(front’, S o)
front’ « front' ® Ay o
//Combine the two branches via Union
/land remove Subsumptions

Cartesian product operation. In Compressed-BFS, we may often reduce the overall runtime of the
Determining each of these sets depends only on the particular tr§@frch procedure by investing additional runtime to eliminate subsump-
assignment t& =t, and not to the internal state of tfrent. Thus, with tions. However, the full search for subsumptions may take significant
each of these sets of clauses, an action can be taken on thefemiire time. A simple search based on two reduction rules can be applied in
In order to prune branches from the search containing violated clauiggar time by a single pass over the ZDD. This opportunistic search
Uy, «, we build the PowerSef'ausesUs - the collection of all sets which N reality may _flnd_ a significant number of subsumptions, and also pre-
do not contain any clausesli ;. We then intersect this collection with S€MV€S the utilization of autark assignments.
the front, leaving only those subsets contained witllfauses, Uy ;. i .
Finally, we can remove subsdsvhich are subsumed by some other set :
A C B as these correspond to suboptimal partial assignments.
Initially, we have naopenclauses, and thigont is set to be the collec- : .
tion containing only the empty set, For each variableg;, we modify . | .
one copy of thdront as described above to reflect assigning: 1. We ) é i
modify another copy to reflect assigning= 0. Finally, the newfront -
is the union of these two, since we must consider promising branches : .
in either case. After all variables are processed, there are two possible :
outcomes. If no branches lead to satisfiability, thenfthat will be ) ) ) ) o
empty (equal td) as it contains sets ajpenclauses, each of which Figure 3: Two cases in which subsumptions can be easily eliminated.
corresponds to a promising branch in the search. If any branches lea?td) Poth children are the same. In (ii), the E-Child is 1.
satisfiability, then there will be no open clauses andtibret will contain
iosn%(t)r\:\?neinmlg%jrzﬂg. Pseudocode for the Compressed-BFS algorithm ¢ fir¢ reduction rule is based on finding subsets which differ in a
. : . . single element. If there are two subsét§ B such thatB has exactly
ZDD aIgo_nthms .d?Pe”d hegvny on th_e ordering of ZDD n_odes. B%’ne additional element, then itis not hard to see there will be some node
cause of this, our initial ordering is designed so the Cartesian PrOdHFihe ZDD which has the form shown in Figure 3:i. That is, whether
F’p?raﬂon takes linear time [13] by ensuring that added nodes have Io%eer upper node is true or false will not affect the evaluation of the col-
indices. Here also, Compressed-BFS’s performance depends on theQkio s characteristic function for sets which depend on this node. Be-
der in which variables are processed. Since only those clausesdutthe., <o of the subsuming ZDD semantics this implies that we should re-
have the potential to be open clauses, we may reorder variables to redUee. 4 sets depending on this node, in which the node evaluates to
CUtW.idt.h As a_preprocessing step to Compressed-BFS, the Ml_NCE e: this can be accomplished by set,ting the T-Child.toHowever,
heurl_stlc _orde_r_lng is applied to attempt’ to redunﬂvx{ldth Reducmg_ because of the zero-suppression rule, we should simply eliminate this
cutwidth is critical to Compressed-BFS's runtime: if full subsumption,ye a5 shown in Figure 3. The resulting reduction rule is the same rule
removal IS applied, the maximum numb_er of su_bset§ at a given sFeFUg]ed in ROBDDs: it can be said that the front in Compressed-BFS has
the front is gxtactly the size of the maximal anti-chain of the partlal%e compression power of both ZDDs and BDDs.
ordered se2-" [13]. The second reduction rule is based on the notion that the empty set
should subsume all other sets. If the empty set is part of a collection,
then it must appear as the E-Child of some node. The sub-portion of
the ZDD which meets this criterion should be eliminated, as shown in
Figure 3:ii. Note that this rule also encompasses more than just selection
of autark assignments due to the recursively-defined semantics of ZDDs.
In testing Compressed-BFS on real-world instances, memory utilization
is the limiting factor rather than runtime. As a result, for this work we
utilize the full search for subsumptions at each step.
4. BOOLEAN CONSTRAINT PROPAGATION
In Compressed-BFS, we store sets of open clauses in a ZDD. The
main idea in augmenting this approach with Boolean Constraint Propa-
gation (BCP) is thatonflictingsets of clauses cannot lie within the same
subset obpenclauses in théront. For our purposes, a set of clauses is
conflictingif it is possible to derive a contradiction by the unit clause
rule. If all such conflicting sets of clauses are discovered, then any par-
tial truth assignment which leaves such a set of clauses clauses open is

front « front g, front
if front =0 then

return Unsatisfiable
if front =1 then

return Satisfiable

Figure 2: Pseudocode for the Compressed-BFS Algorithm

invalid. We may prune such branches from the search by forming a ZDD
containing conflicting sets of clauses. We then remove such sets from
thefront by use of theSubsumed Differenagperator.

4.1 A Motivating Example

(a+d)(a+cj(a+c)(a+b)(a+b)

Here, we will consider the state of the Compressed-BFS algorithm
after processing the variabée Since thdront consists of all sets of open
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clauses, it is not hard to see that fhent has the form shown in Figure unit clause, we effectively capture only the effect of implications on our
4. Under the assignmeat= 1, clauses 1, 2, and 3 are open. Howeveiormula. In the “depth 1” BCP mentioned above, these violated clauses
the assignmerd = O leaves clauses 4, 5 open. Thus after varialilee  were stored in sets. The Cartesian product of such sets gives conflicting
front ZDD contains two subset$1,2,3} and{4,5}. pairs of clauses. Rather than simply find a set of clauses which is vio-
lated by this single assignment, we can recursively build a ZDD taking
into account multiple assignments. Simple pseudocode for such a recur-
sive search is shown in Figure 6. The expressiveness of the ZDD data
: structure helps make such a recursion possible.

. GetConflictzDD(FormulaF’, IntegerVar)
foreach clauseC € F’
if C has no literals (after theut)
/IThen C is a violated clause
ViolCls «+ ViolCls |JC.

Figure 4: The Front after Variable a /[Find the set of variables implied by some unit clayse
IVars + ImpliedVars( UnitsF') )

After variablea, all clauses in this example await, having only one
unassigned literal. If any of these clauses appear in some subset inf the //Find the lowest index variable v implied by some

front then they must be@penclauses, and imply the remaining unast /lunit clause, such that » Var

signed literal. If two clauses imply literals of opposite polarity, they Viow < UpperBound(IVarsyar)

cannot appear in the same subset. This basic rule forms the basis [of a if no suchviq,y exists

“depth 1" BCP procedure: we can form ti@artesian Producof the return ViolCls

set of clauses implying some literlabnd the set of clauses implyirig ConflZdd+« ViolCls

Each pair in this product will contain a clause implyihgnd one im- /Iterate over all implied variable% v

plying I, and thus theCartesian Producbnly contains conflicting sets forall v €lVars such that > vjqy

of clauses. Any subset in tHint which contains such a pair of clauseg //Modify F’ to reflect assignment, and recurse

can be pruned. Notice that sets of conflicting clauses at a given step in Z1 + GetConflictZDD (Assign(F’, v = 1), v)

the algorithm are independent of the front. Z0 + GetConflictzDD (Assign(F’, v=0), v)
For the given example, clause 2 implies the litesawhile clause 2+ 7200271

3 implies the literalc. Thus, any subset in thieont containing{2,3} ConflZzDD <+ ConflZDD Z

can be pruned. Similarly because of the litdsahny subset containing return ConflZDD

{4,5} can be pruned. The ZDD containing these subsets is shown
figure 5. These implied conflicts would be removed via $ubsumed
Differenceoperator. In this case the resultifrgnt will be empty, since Figure 6: Constraint Propagation Pseudocode

each subset of the front is subsumed by some subset in the Conflict ZDD . ) )

and we can conclude the formula is unsatisfiable. To contrast this, thét any stage in the recursion, the procedGetConflictZDDonly re-
original Compressed-BFS algorithm would be forced to process valiirns violated clauses or conflicting sets of clauses. This procedure for

ablesb andc before determining that the formula was unsatisfiable. finding all conflicts after a given step in the search is based on condi-
tioning on a given variable. Since the variable must be either true or

false, we must encounter conflicts found in one of these two branches.
Q z Initially, one would invokeGetConflictZDDby passing it a simplified

\ formulaF’ from the original CNF instance. Here we may remove all

i Q ’ clauses before theut as well as all literals before thaut from remain-
@\ . ing clauses. The procedukessignworks by essentially removing all

n

clauses irF" which are satisfied by the assignment to some variable
0 and removing all literals of from clauses which are not satisfied.
i The proceduré&etConflictZDDworks as follows. It first finds all vi-
L olated clauses. It then branches over the implications efréilclauses.
@ For each such variableimplied by some unit clause, it forms the ZDD
Z1 of all conflicts wherv = 1. It similarly forms the ZDDZO0 of all
conflicts whenv = 0. Note that since this variable was implied by some
Figure 5: Conflicting Sets of Clauses after Variablea unit clausec, thenc necessarily appears as a single element in efther
or Z0. Sincev must be either true or false, we must encounter conflicts
in eitherZ1 or Z0. Then, any subset in tHeont which is subsumed by
4.2 The BCP Procedure some subset in th@artesian Product B® Z1 cannot yield satisfiability
When finding implications at a given stage, Compressed-BFS is rax it has elements from bo#1 andZ0.
limited to finding the “depth 1” implications as shown above. Rather, Finally, GetConflictZDDtakes the union of all such branches. The
such implications can be propagated, possibly deriving additional setsabsuming semantics of ZDDs used in Compressed-BFS also apply here:
violated clauses. The premise of a general procedure to find all confliaste may remove subsumed sets from the conflict ZDD. The only remain-
ing sets of clauses is to consider the effects of assigning some varightgpoint of the procedure is the use of the Intégarin the search. This
v eithertrue or falseand keeping track of which clauses are violated bigs used to break the symmetry which arises during the search by impos-
doing this. By choosing only out of literals which are implied by some ing an ordering on branches. Thus we will never attempt to assign, e.g.
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¢ =0 thend = 1 as well as recursing oth = 1 thenc = 0. Since the algorithm. However these instances are solved so quickly that any addi-
combined effect of these assignments is the same, we can imposei@mto the algorithm will likely have this result.

ordering on variables being assigned and eliminate such redundancy. the XOR-Chain family of benchmarks are known to be difficult for
should be noted that the ordering used on the set of implied variablesaivers based on DLL algorithms while easy for some other methods
generakannotsimply by the variable ordering used to process variableg solving SAT [1]. Here we show these are easy for Cassatt as well.
within Compressed-BFS. This is because after branching on vasiabl&Ve report results of zChaff Z2001.2.17 to show typical performance of
unit clauses may in fact imply some variable which occurs befovith  tuned DLL-based solvers. In Figure 8 runtimes for Cassatt and zChaff
this ordering. Instead, we must order the search based on the order in

which clauses ifr’ become unit, and new variables are implied. ThegeXOR-C | S/U Cassati] BCP 2] BCP 3] BCP4 zChaff
new implications should be inserted later in this ordering, to ensure t1all._%g Bmg 0.531 0%1 88% 88% ggg
we maintain completeness. 132 |UNS| 001 | 002 | 003 | 007 | 59.72
i 136 UNS | 0.02 0.03 0.03 0.06 1088.95
4.3 EXtendmg BCP o ] 140 UNS | 0.01 0.03 0.06 0.18 || MEM-OUT
Although the procedure presented above will find all possible con-1.64 UNS 0.02 0.06 0.09 0.15 || MEM-OUT
flicting sets of clauses at a given stage in the algorithm, it may takel-izl% Bmg 8%% 83021 882 883 MEgl-g%UT
§|gn!flcqnt time to perfor_m_ such an exhaustive search if there are m_xni:]_z[l UNS 0 002 0.03 002 833
implications. Another difficulty is that deeper searches can only find;'1735 | NS 0.01 003 003 006 92 54
larger sets of conflicting clauses. Larger sets are less likely to subsyme 136 | UNS 0.02 0.02 0.03 0.02 || MEM-OUT
subsets in th&ont, and are thus of limited benefit. 1.140 | UNS 0.01 0.03 0.03 0.05 MEM-OUT
Both problems are addressed by bounding the depth used in the{rd-164 | UNS | 0.03 | 0.06 | 0.1 0.15 || MEM-OUT
cursion to a given level. This places a bound on the number of claused--128 | UNS || 008 | 0.22 | 0.42 | 0.47 || MEM-OUT
e - - . ; 16 UNS|| 0.0 0.02 0.01 0.03 0.11
within any set of conflicting clauses the procedure finds, increasing the 54 UNS 0 001 0.02 0.04 11.89
chance that these sets subsume some set ifiche Such a restriction | 2 32 UNS 0.01 0.02 0.04 0.04 113.94
will also help limit the runtime of such a search. 5_28 8“2 88% 883 8821 88673 35045013536
In adt_jltl_on,_ the _BCP-based search for confllc_ts at variklél shgre 5 6d UNS 003 0.08 013 021 || vemoor
much similarity with the search at variatie- 1, limiting the effective- 2128 UNS 0.1 0.22 0.42 0.64 |l MEM-OUT

ness of such a search. Here we apply BCP only eveést@ps, where
is the depth to which we perform the search. In addition we limit prop-

agation of assignments to those ‘near the cut’ by a factodoFally, Figure 8: Runtimes for the XOR-Chain family

during the first and last few steps of Cassatt’s search, the front tends to

already be quite small, and additional search will be superfluous. To h@lgre obtained on a 2.0GHz Pentium 4 Xeon with 1.0GB RAM. As men-
compensate for this, here we do not apply BCP during the first and l&shed, on these structured instances BCP does not provide an improve-
10% of variables. However when BCP should be applied is consideng@nt, but the original runtimes are so low that should any improvement

a tunable parameter of our search. exist, it would be difficult to detect empirically.
A similar situation occurs for instances based on FPGA switchbox
5. EMPIRICAL RESULTS routing [4]. Figure 9 shows results for Cassatt on instances based on

Cassatt, our implementation of the Compressed-BFS algorithm, i

written entirely in C++ USing the CUDD package [16] In addition, we assatt zCha

. . ; . 1011 | UNS 0.04 0.12 0.45 1.18 >250

use the existential abstraction procedure fromBReallibrary [11]. To 10.12 | UNS 0.05 014 035 096 | 3250
obtain these results, we disabled reordering in CUDD. Cassatt runtimgs 10.13 | UNS 0.03 0.15 0.59 2.01 >250
do not include time required to obtain the MINCE variable ordering or %8_%8 Bmg 822 %374 %g% 613.53? >%gg

i i 7 i B . . . . >

I/OOtlljr:]erzégjtlltw:rfslfli\ﬁcr)stwgrigen W|_th defa_lult conf!guratlons. _ 1112 | ONS 0.06 0.16 059 11 2520
gories. First, on instances which lack 1113 | UNS 0.04 0.15 074 297 | 3250

a great deal of structure such as randomized instances and many reglq1 14 | UNS || 0.04 021 | 098 | 4.09 | >250
world instances the original Cassatt algorithm performs relatively poorlyy 11.15 | UNS 0.06 0.24 1.06 543 | >250
It is on these instances which the addition of BCP gives an increase ih 11.20 | UNS 0.1 0.51 3.3 | 20.68 | >250

performance. However this increase is modest, and on these instancesig—g gﬁ$ 882 8% 8%2 1226’4 g(l):f
Cassatt is not competitive with DLL based solvers. We compare Cassait 15 g SAT 0.06 012 037 203 | =250
without BCP to Cassatt with bounded depth BCP. In Figure 7 results are 12 9 SAT 0.12 0.19 0.53 236 | 104.7
shown on instances from the DIMACS benchmark suite. The results in %%%(1) gﬁ¥ 8(1)? %226 83; 33; >§gg
Elgg(;?A\'\//lverrfnﬁ?r:aulgd on an AMD Athlon 1_.ZGHz machine ywth 1GB 1512 | SAT 052 067 155 =68 1>32.91
g Linux. Runtimes of DLL-solvers are not included 139 SAT 0.35 0.44 0.8 279 | 19163

as they solve all instances quickly. 13.10 | SAT 071 0.84 1.43 547 66.3
On aim instances, the addition of BCP seems to help, especially as 1311 | SAT 1.61 1.8 2.4 4.47 | >250
problem size increases. Faim-200 andaim-100 instances, depth 1312 | SAT 2.66 288 | 3.62 | 7.99 | >250

3 BCP appears to give the best performance. Instances which were not
solved within a 250-second timeout limit were treated as if they took 250 .
seconds; this slightly skews the shown results in favor of Cassatt withofrt

BCP as the addition of BCP allows Cassatt to solve more instances. . ) ) . )
Our second class of results is over instances with large amounts™§fCA switchbox routing [4]. Again, runtimes for Cassatt on these in-

s_tructure such as pigeonhole instances. The.se i_nstances are oftert 8ethe SAT2002 solver competition, zChaff outperformed all other
signed to defeat DLL-based solvers or resolution in general. Here Cgslvers on thex2* family of instances and performed competitively on
satt performs extremely well and the addition of BCP only hinders théd* andx1.1*.

gure 9: Runtimes for instances from FPGA Switchbox Routing
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Benchmark S/U Cassatt + BCP Depth 2] + BCP Depth 3] + BCP Depth 4
Family %Sol ] Avg | %Sol| Avg | %Sol Avg %Sol | Avg
aim-200-16-yes1 SAT 75 | 12295 75 11771 75 113.95[ 75 | 119.94
aim-100-1.6-no UNS || 100 .56 100 | 1.165 | 100 .6525 | 100 .885
aim-100-16-yesl SAT 100 .06 100 .09 100 .13 100 1.08
aim-100-2.0-no UNS 25 | 187.51| 25 | 187.52| 25 187.53 | 25 | 187.52

aim-100-20-yesl
aim-100-34-yesl
aim-100-60-yes1

SAT 100 33.6 100 31.8 100 29.1 100 315
SAT 0 >250 25 2374 | 25 231.25| 25 | 218.16
SAT 100 32.5 100 19.0 100 17.8 100 37.2

aim-100% 70.83] 84.04 75 79.5 75 7774 75 79.39
aim-50-1.6-no UNS] 100 0.02 100 0.02 100 0.04 100 0.07
aim-50-1.6-yes1 SAT 100 0.02 100 | 0.025 | 100 0.03 100 0.06
aim-50-2.0-no

UNS || 100 0.14 100 0.14 100 0.18 100 0.33
SAT 100 0.04 100 0.05 100 0.08 100 .
SAT 100 0.54 100 0.45 100 0.58 100

aim-50-2.0-yes1 0
. 1.3
SAT || 100 0.29 | 100 0.30 | 100 1.23 100 8.2
1
0

aim-50-3 4-yesl
aim-50-6 0-yes1

N N
QU NP AAANRIAAADAADN I

aim-50* - 100 0.18 100 0.17 100 0.355 100 .69
dubois* UNS [[ 100 0.01 100 0.02 100 0.02 100 .01
pret* UNS || 100 | 0.016 | 100 [ 0.018 | 100 0.02 100 0.02
parl6* SAT 80 85.52 60 | 129.19] 60 | 131.338| 60 | 136.75
parl6-c* SAT 60 | 152.42| 60 | 154.67| 60 155.26 | 60 | 159.00
par8* SAT 100 0.71 100 | 0.488 | 100 0.89 100 2.04
par8-c* SAT 100 | 0.026 | 100 | 0.058 | 100 0.128 100 0.45

Figure 7: Instances from the DIMACS benchmark suite
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