CONTANGO: Integrated Optimization of SoC Clock Networks

Dongjin Lee and Igor L. Markov
EECS Department, University of Michigan, Ann Arbor, Mi
University of Michigan, 2260 Hayward St., Ann Arbor, Ml 4832121
{ejdjsy, imarkoy @eecs.umich.edu

~ Abstract—On-chip clock networks are remarkable in their ~easier problem and on a smaller scale — has blossomed well
impact on the performance and power of synchronous circuitsin - into the late 2000s, leaving clock-tree synthesis a difficul
the|r_ susceptibility to e_1dvers_e effects of semiconductorechnology high-value target. As the accuracy of compact delay models
scaling, as well as in their strong potential for improvemen for transistors and wires deteriorated, clock-networkglem

through better CAD algorithms and tools. Existing literature X ‘ e
is rich in ideas and techniques, but performs large-scale gp the industry moved to SPICE-driven optimizations [9], [25]

mization using analytical models that lost accuracy at recet Clock networks were among the first circuits to suffer
technology nodes, and has rarely been validated by realisti the impact of process, voltage and temperature variations.
SPICE simulations on large industry designs. Systematic variations can affect paths to different sinks i

Our work offers a methodology for SPICE-accurate optimiza- diff t Ki ffecti K higher th inal
tion of clock networks, coordinated to satisfy slew constrats ifrerent ways, making efiective skew higher than nomina

and achieve best trade-offs between skew, insertion delaypwer, SKew. Intra-die variations may be stronger on some paths
as well as tolerance to variations. Our implementation, cad than on others, which would further increase effective skew
Contango, is evaluated on 45nm benchmarks from IBM Research These challenges have motivated research at the deviceitcir
and Texas Instruments with up to 50K sinks. It outperforms al  anq glgorithm levels [17]. In general, smaller sink latesci
published results in terms of skew and shows superior scalality. L
and shorter tree paths decrease exposure to variationse Som
researchers tried to increase the tolerance of buffers to CD
changes and to temperature [15], some proposed to tune wires
|. INTRODUCTION or buffers based on post-silicon measurements [18], angtsom
Accurate distribution of clock signals is a major limitingdeveloped methodologies for inserting cross-links inte th
factor for high-performance integrated circuits when wunirirees [11], [13], [19], arguing that such links can decrease
tended clock skew narrows down the useful portion of tibe impact of variation on skew. Existing literature tends
clock cycle. Historically, clock skew became one of the firgp (1) rely on closed-form delay models during large-scale
victims of semiconductor scaling, when wire delay startegptimization, (2) frequently focus on a single optimizatio
growing in significance relative to transistor delay. Hege technique in analysis and evaluation, (3) neglect the diffies
popular in the industry, offered symmetric distributiont-ne in modifying highly optimized clock trees. Our work seeks to
works that guaranteed nearly-equal geometric lengths frem address these omissions and develops a practical mettyydolo
chip’s center to individual clocked elements. Howeveryeks for effective SPICE-accurate optimization, rather thaggaht
did not immediately account for different sink capacitanoe algorithms with provable abstract properties. With preces
uneven distribution of sinks throughout the chip, and did nariation in mind, microprocessor designers combine 1a&gul
minimize wire capacitance. The first geometric algorithors f meshes with local or global trees [25]. However, meshes have
clock routing evaluated skew in terms of wirelength from thenuch higher capacitance and use more power.
source to sinks and produced minimum-wirelength trees for aOur work focuses on clock-network synthesis for ASICs
given sink clustering (which is not difficult to optimize)ing and SoCs, where clock frequencies are not as aggressive as in
the deferred merging and embedd{@ME) principle [3]. The high-performance CPUs, but power is limited, especially fo
tree structure facilitated powerful dynamic programmiagg portable applications. In this context, tree topologiasnai
DME algorithms were extended (1) to handle skew in ternibe most popular choice, potentially with further tuningdan
of Elmore delay, (2) balance uneven sink capacitance, ag@dhancements. The SoC context introduces another twist —
(3) minimize wire capacitance under non-zero skew bountiyout obstacles. SoCs include numerous pre-designedsloc
[14]. The DME family of algorithms were a major researcfCPUs, RAMs, DSPs, etc) and datapaths. While it may be
achievement, both as mathematical insights and in termspsfssible to route wires over such obstacles, buffer irmeit
their computational performance. BST-DME algorithms [6lypically not allowed. One can fathom the difficulty of such
developed in the late 1990s reduced skew to single ps iry faigptimization through comparison to signal-net routing eveh
large circuits, while requiring only minutes of CPU time.  obstacle-avoiding Steiner trees currently remain an actiea
Semiconductor scaling in the 1990s made clock optimizaf research [22]. Our contributions include:
tion more challenging. While transistors continued seplin « A careful analysis of design steps and optimizations
interconnect lagged in performance [10]. This phenomenon for high-performance clock trees, including the range,
boosted demands for repeaters in clock networks, raised the accuracy, and substitutability of specific techniques.
power profile, and complicated their synthesis. Research ine Notions ofslow-down & speed-up sladkr clock trees.
delay-driven buffering of single signal nets — arguably an « Tree optimizations driven by accurate delay models.



« A simple and robust technique for obstacle avoidance in
clock trees subject to slew constraints.

« A provably-good sink-polarity correction algorithm.

« A methodology for clock-tree optimizations that outper-

._E'_I_I 1

forms the best results at the ISPD'09 contest every
benchmarky 2.15— 3.99 times, while reducing skew to

2.2—4.6ps(Table V). It outperforms all published resultsFig. 1.

L

(@)

ZST

(b) 3ps BST

Min-wirelength trees with zero and bounded skew (@&kndelay).

in terms of skew (Table VI). On newer Texas Instrumenf3"y fragments of actual clock trees are shown.

benchmarks with up to 50K sinks, skew remaind 1ps

(c) 9ps BST

. Skew Initial Atter skew and CLR optimizationg
Selecting best parameters for each benchmark can furth%found] ps|| CLR, ps | CLR, ps | Skew, ps| Cap., fF
improve results, at the cost of increased runtime. But dloba— 52.01 13.75 1633 77653
skewx 20psis considered very small for ASICs and SoCs. 3 57.87 16.33 3.106 74606

In the remainder of this paper, Section Il reviews relevant 6 68.06 18.91 6.004 79955
previous work and the ISPD'09 CNS contest. Section Il 9 69.64 3T1A'21E| 18.403 78779

describes our analysis of the clock-network synthesislprob
and introduces slow-down & speed-up slacks. Major optimiza
tion steps are described in Section 1V, and Section V prese
empirical results.

THE IMPACT OF SKEW BOUNDS ONspd09f22

Btown their BST/DME algorithm and hinted at more advanced
geometric data structures. Unlike in [16], the ISPD‘'09 esht

[I. BACKGROUND AND PRIOR WORK allowedrouting but notbufferingover obstacles, with SoCs in
DME algorithms. Traditionally, clock trees have beenMind. ISPD'09 benchmarks included abutting obstacles that

constructed with respect to simple delay models — geometffmed monolithic rectilinear obstacles.
pathlength or Elmore delay. In this context, the results3jp-[  Fast buffer insertion. L. van Ginneken introduced an
[5], [7], [30] show how to build zero-skew trees (ZSTs) witralgorithm for buffering RC-trees [8], which minimizes Elngo
minimal wirelength, improving upon H-trees and fishbones.delay and runs i©(n?) time, givenn possible buffer locations
The Deferred Merge Embedding (DME) algorithm, usingnd buffer specification. While not intended for clock treies
the concept ofmerging segmerB], [4], [7] for constructing Minimizes worst delay rather than skew. T@¢nlogn)-time
zero-skew tree, was extended to the bounded-skew tree (BSd@jiant of van Ginneken'’s algorithm proposed in [26] is more
problem. BST/DME algorithms [6], [14] generalize mergingppropriate for large trees. A key insight into van Ginnéken
segments to merging regions. When BST/DME algorithn@gorithm and its faster variant makes them applicable to ou
were introduced in the early 1990s, many chip designs iwork — while trying to minimize source to sink latencies,
cluded one large central buffer to drive clock signals tiglou these algorithms insert almost same number of buffers on
the entire chip. Today traditional clock trees cannot gatisevery path and therefore result in low skew if the initialetre
slew constraints in large ICs because the maximal length \wés already balanced.
unbuffered interconnect decreased significantly due tb-tec Other buffering techniques have been proposed as well, e.g.
nology scaling [10]. Furthermore, the Elmore delay model linear-time algorithm from [2] that minimizes the number
used by published clock-tree optimizations lost accuragy dof buffers while bounding capacitive load and slew rate,
to resistive shielding and the impact of slew on delay. but does not minimize delay or skew. A dynamic program
BSTs allow one to trade off a small increase in skew fdrom [1] inserts a limited number of buffers subject to a
reduced total wirelength. Figure 1 shows that BSTs are shortnaximal skew in buffer counts on source-to-sink paths. At th
than ZSTs. However, BSTs are less balanced than ZSTs 488D‘09 contest, slew constraints were checked by SPICE,
Elmore delay used in BST generation is inaccurate, thus thet capacitance limits were relatively generous. Our com-
capacitance saved on wires can be lost when compensatiegitors predominantly used greedy bottom-up buffer+inse
for skew with accurate timing analysis. After initial buffe algorithms that added each buffer as high in the tree as
insertion, slow sinks and fast sinks are more clustered possible, while satisfying slew constraints. Such techaiq
ZSTs. Since our skew optimization techniques exploit theseek to minimize capacitance as the top priority. However, w
clusters, BSTs need greater resources to reach near zaro-sthose the (faster variant of) van Ginneken'’s algorithm,clvhi
than ZSTs. Table | shows the impact of BST skew bounds seeks to minimize worst sink latency. Our rationale was that
final results (CLR is defined at the end of Section Il). Thprocess variations can be moderated by lowering sink Istenc
skew bounds during BST construction are based on Elmaed that it is relatively easy to slow down paths that are too
delay, and the final results are based on SPICE simulatiofest, but it is harder to speed up slow paths. It is difficult to
Based on overwhelming empirical evidence against BSTmake a rigorous comparison with slew-based buffering [R2].
Contango does not use them. particular, some of our competitors at the ISPD 2009 contest
Obstacle-avoiding clock trees The concept of merging relied on it and produced relatively poor results, but agher
regions in BST/DME was extended to obstacle-avoiding tred&l better. In any case, our overall results compare favprab
in [16], where(i) obstacles were assumed rectanguliay,no to the best published results, especially in terms of nomina
routing over obstacles was allowed, afiid) buffering was not skew, and we were unable to improve them further by using
considered. The authors noted that obstacle processiwgdalo slew-based buffering.



The ISPD'09 clock-network synthesis conteswas orga- only 1% of 500ps sink latency, but 50% of 10ps skew.
nized by IBM Austin Research Laboratory and based onGlosed-form models do not capture resistive shielding iglo
45nm technology [29]. Sink latencies and clock skew wergires, do not propagate slew with sufficient accuracy, and do
evaluated by SPICE. The main objective was the differenoet account for slew’s impact on delay well. Newer, more
between the least sink latency @1.2V (supply) and the gseatsophisticated models are laborious to implement and only
sink latency @1V (supply). Thi€lock Latency RangéCLR) available in modern commercial tools. Our strategy is to use
metric was intended to capture the impact of multiple powsimple analytical models at the first steps of the proposed flo
modes with different supply voltages [24], but nominal skew— (1) to construct zero-skew clock trees and (2) to perform
was also recorded. The 10%-90% slew rate of 100ps and tatatial fast buffer insertion, — but drive further optimizans
power were strictly limited. by SPICE runs, Arnoldi approximation, or any other avaiabl

Several papers were published inspired by the ISPD’@igning analysis tool/model.
contest. Researchers from NTU proposed in [27] a DynamicTo minimize the number of time-consuming SPICE invoca-
Nearest-Neighbor Algorithm (DNNA) to generate tree topokions, we pursued several techniques. Runtime can be signifi
ogy and a Walk-Segment Breadth First Search (WSBF&ntly reduced usingpcalizationand batch-mode evaluation
for routing and buffering. To further refine the tree, thepuring localization, one prunes large portions of the clock
use dangling branches to adjust capacitance of wires (ds=e that do not affect latencies to the sinks impacted by the
our discussion in Section IV-G). Researchers from NCTthanges in question [11]. This does not reduce the number of
proposed in [21] a three-stage CLR-driven CTS flow bas&PICE calls, but rather decreases the complexity of each run
on an obstacle-avoiding balanced clock tree routing aligori On the other hand, a batch of changes can be evaluated by a
monotonic parallel Buffer Insertion, as well as Wire-Sginsingle SPICE run, as long as multiple changes do not affect
(BIWS) and wire-snaking. A Dual-MST (DMST) geometricthe same path from root to a sink.
matching approach is proposed by researchers from HKPUAnother avenue to streamlined SPICE-driven optimizations
in [23] for topology construction, along with recursive f&rf is to use mathematical properties of circuit delay, such as
insertion and a way to handle blockages. A timing-modelindeonotonicity, convexity, and linearity with respect to sm
pendent buffered clock-tree synthesis is proposed in [28. parameters. Monotonicity and convexity support binaryc®ga
authors proposed a branch-number plan, a cake-cutting pasthere an optimal value is sought on a certain interval. Aheac
tioning and an embedding-region construction for nonyinastep of the search, the middle point of the interval is evaltia
symmetrical buffered clock tree synthesis. They achievad | by SPICE (e.g., a wire can be sized half-way) and the result
skew but do not explain how to generate obstacle-avoidikigtermines whether to recur to the left or right half-intdrv
clock trees. Linearity enables extrapolation of multiple values based o

several SPICE runs.
[1l. PROBLEM ANALYSIS

The design of a clock network offers a large amount @ Nominal skew optimization

freedom in topology selection, spacing and sizing of iresmt i . .
pology b g g An initial buffered clock tree is constructed early in the

as well as the sizing of individual wires. Traditionallytwerk desian flow. A ) | olati he | f h
topology is decided first. Trees offer unparalleled flextpiin esign Tow. ASSUMING NO SIEW VIO at|0n§, the latency of eac
%lnk s (Ts) is known from SPICE simulations (or faster tech-

optimization because latency from the root to each sink ean D. h Arnoldi-based del lculati whi
tuned individually, while large groups of sinks can be tunedques, such as Armoldi-based delay caicu ations), at lwhic

by altering nodes and edges high up in the tree. point minimal and maximal latencie3n{ax and Tmin) can be

Composite buffers can be built by stacking up inverters ﬁund.1 Since sink latencies are significantly larger than skew

parallel and/or in series. Parallel composition decredsgsr max— Tmin), SKeW can be improved by either decreasTagx

resistance, but increases input pin capacitance, whiléniga (speeding up the ;Iowest_ Sinks) or increasiig (slowlng
the intrinsic delay intact. The spacing of buffers is Iaygeldown the fastest sinks) without critical adverse effect ik s

responsible for preventing slew violations and also a#fec tenc-le.s.. ) L

clock skew. It is sensitive to driver resistances, the makim _Definition 1: Conﬁlder a clock tree and its siskTheslow-
capacitance (wire and input pins) that can be driven by angivgo"vn SI"’,‘Ck Slage . (Speed",‘p slack SIag#) of s IS the
composite buffer, as well as branches in the buffer’s fanodmount inps by which the smk_ Iatenc_y can be unilaterally
which determine the number of input pins driven. A Singlgwreased (decreased) without increasing clock skew.Harot

low __ ast _ .
wire segment can be split into smaller segments, and each ¥g{ds: SIack®" = Tmax—Ts and Slack®s! = Ts — Toin. _
be sized independently. Slow sinks often cluster together, and so do fast sinks.

Hence, clock skew can be improved by modifying a few nodes

o o o ) ) or edges high in the tree. To find desired delay change, we

A. Optimization objectives & timing analysis techniques propagate slack information up the tree as follows.
Accurate clock network design is complicated by the fact Let Sinkg be the set of downstream sinks for edge

that the optimization objectives are not available in aibse Definition 2: Consider a clock tree and its edgéeTheslow-
form and take significant CPU resources to evaluate. Ske\wn slack sm@)@w (speed-up slack Slaﬁé') of e is the
optimization requires much higher accuracy than popular
Elmore-like delay models. For example, a 5ps error reptesen !Separately for rising and falling transitions, for each Ps6Fner.



amount inps by which the edge delay can be unilaterallfC. CLR optimization

increased (decreased) without increasing clock skew. Our methodology pursues two objective functions —- nom-
Lemma 1:For any edgee in the tree inal skew and the ISPD09 CNS contest metric, CLR, in-
troduced above. Due to significant correlation between CLR
and nominal skew, some of the optimizations in our flow
target skew optimization, some target CLR, and some address
Given slacks om sinks, all edge slacks can be computed ihoth (see Table IIl). In practice this approach achieves a

o Slack'®" = mingsinks Slack'o"
o Slack?®' = mingsinks Slack 2

O(n) time. good trade-off between the two optimization objectives] an

Lemma 2:For any edgee and its parent in the tree,iS representative of multi-objective optimization reguairin
Slack'o" > Slac |§r\gn(e) and Slacigast > Slacﬁgfém(e)- many practical settings. Recall that the CLR calculation is
based on the sink latencies at two different supply voltage

The flexibility of a tree edge is limited by each downstream . . . .
sink Thereforé for edgesgclose to the {oot we often hat ttings. There are mainly two strategies to reduce CLRt,Fir
smég'owz Slac,lgaSt — 0. It is important to note that the reducing skew directly contributes to reducing CLR untiwsk

- . becomes very small (e.g. less than 5ps). Let sink L be the
validity of slacks-related calculations does not dependhen . . ; Y, :
use of specific delay models or SPICE simulations. Wh nk with the least sink latency @1'2\7'3( ) and sink G be

: ; : 1.
visualizing clock trees, we color their edges with a redegre CERS'_nI_(I_XV J&h_tr;el.z%re\?\jﬁzzswg gﬁ;ﬁiﬁtﬁg)& Tor;e;nk
gradient, indicating low slack with red and high slack witib @I 2\G/ (rl.zv)L th.enCLR = (TIOV.T12V) L1 -|)—/1.2v)
g 1o . e ), = (I -Tg G )
green, as shown in Figure 4,' , We call (T3%-T2?V) the variational part of CLR andr¢?'-
Lemma 2 suggests that, instead of changmg the delay-pf.zv) the skew part of CLR. The skew part of CLR can be
an edge, one can change the delay of its downstream edggfceq by skew optimization techniques. Since the corner
by an equal amount, as long as only one delay changegjSks of skew are not always same to the corner sinks of CLR
applied on each root-to-sink path. When choosing betwe@?nk L and G), CLR needs to be measured after any skew
tree edges on the same path, we prefer (at early stages,@fimization to check CLR improvement. The second strategy
optimization) to tune edges as high in the tree as possibi§, c| R optimization targets the variational component of

so as to minimizg(i) the amount of changéji) the risk of | g The detailed descriptions of optimizations for theveke
introducing slew violations anii ) power overhead. However, 4, variational part of CLR are discussed in Section IV.
in a highly optimized tree, we tune bottom-level edges where

we can better predict the impact on skew. The preference 91 Coordinating multiple optimizations

high-level tree edges can be formalized as follows. We found that different clock-tree optimizations exhibit

s . . . | o ) A
Pr0||30(3vsmon 1-|';V(V)r each edge in the tree, defind®" = itferentstrength/rangeand differentaccuracy(see Tables i
Slack"— Slack o o) If every edge is slowed down exactlyang vy, Our strategy in coordinating clock-tree optimiaas
by AgY, the tree’s skew will become zero, and both slows to start with optimizations that offer the greatest range

down and speed-up slacks will become zero. and then transition to optimizations with greater accuracy
NaturaIIyAéaSt:SlacléaSI—SIaclézf;n(e), and a mirror state- Each step should decrease the main optimization objective

ment holds. For a tree edgeit is possible thapf®' > 0 an

A% > 0, facilitating conflicting optimizations. If optimiza-

tions are not coordinated well, some edges may be sped ujy- PROPOSEDSOC CLOCK-SYNTHESIS METHODOLOGY

and some slowed down, while the overall skew is unchangedOur proposed clock-network synthesis methodology and its
To avoid such conflicts, one can perform rounds of speed-nfajor algorithmic steps are shown in Figure 2. Contango first
and rounds of slow-down, separated by SPICE-based analysiids an initial tree using a ZST/DME algorithm [6] and adte
and slack update. In practice, it is easier to slow down @nto avoid obstacles. It then uses &fnlogn)-time variant
edge than to speed it up. Thus, any possible speed-up, ¢.g.obvan Ginneken’s buffer insertion algorithm [26] to ensure
using stronger buffers, is performed first. Rounds of spged-small insertion delay and to satisfy slew constraints. Aeser
and slow-down are more conveniently performed top-down, 86 novel clock-tree optimizations are applied next.

that when an edge cannot be tuned by the desired amount, the

remainder is passed to its downstream edges. A. Obstacle-avoiding clock trees

We found that after nominal skew is sufficiently optimized, As we pointed out in Section I, obstacle-avoiding clock
both rising and falling transitions can individually limspeed- trees can be built by repairing obstacle violations in ZSTs.
up and slow-down slacks. We handle the two transitiofhis approach is attractive when large obstacles abut the
separately and define edge slacks as the smaller of riske-slekip’s periphery because ZSTs naturally avoid areas withou
and fall-slack. Furthermore, speed-up and slow-down slac&lock sinks. This approach is also attractive when obssacle
can be computed for each process corner given (two in taee small or thin enough that a buffer inserted immediately
ISPD'09 contest). In order to improve the multicorner CLBefore the obstacle can drive the wire over the obstacle,
objective, a tree edge can be sped up conservatively by #te that no rerouting is necessary. A third convenient case
minimum of its speed-up slacks, and can be slowed down bgcurs when a wire can be rerouted around the obstacle
the minimum of its slow-down slacks. without an increase in length. Most obstacles are rectangul

d sufficiently to be within the range of the next optimization.



= L Obstani Initial Modern SoC layouts are littered with obstacles, which
B Zero-Ske ¥ Avoiding —| Buffer upset regular structures such as meshes and H-trees. In the
i = T - ISPD 2009 contest, such layouts required numerous detours.

Detouring may significantly increase skew, but the subseique
skew optimization techniques can compensate for that.

B. Composite inverter/buffer analysis

Composite inverter/buffer analysis Most technology li-
braries support dedicated clock buffers or inverters that a
larger and more reliable than those for signal nets. Inglustr
designs usually offer at least six different sizes. Parathen-
position of buffers increases driver strength, helpindvegiew
constraints and improving robustness to variations. Yeffeb
sizes must be moderated to satisfy total power limits. For
a given buffer library, we consider many possible composite
buffers. Using dynamic programming, we select several non-
Fig. 2. Key steps of the Contango mgthodology. Blue boxes repres%ngfg??gigrgggﬂ%lr?)?;ﬁ;::?jte?;?s t;;u(;‘tmhﬁ{ezvzﬁleur:tizgeurl
skew reductiortechniques, red octilinear shapes shGkR reduc- - AlY )
tions, and the green box with thick border reduces both objectivefie ISPD'09 contest used only two inverter types large
An Improvement- & Violation-Checking (IVC) step follows éa andsmall. Table Il shows that eight parallemall inverters
Clock-Network Evaluation (CNE) using circuit simulatiosots, e.g., exhibit smaller output resistance than daege inverter, and
SPICE. “Fail” indicates no improvement or having slew vi@as, gma|ler input/output capacitance. Hence Contango used 8
leading to a transition to the next optimization. small inverters instead ofarge inverters, in batches of 16
24x, etc. This benchmark-independent optimization, along

in shape, but such rectangles may abut, creating rectitine®ith buffer sizing, plays an important role in our methodpto
shaped obstacles. When two obstacles abut, we cannot place a

buffer between them, and therefore handle them as one com- INVERTER INPUT OuTPUT

. . . TYPE Cap., fF| Cap., fF| Res.,Q
pound obstacle. Contango detours wires using the following X Large 35 30 W)
algorithm, illustrated in Figure 3 for a composite obstacle 1X Small 4.2 6.1 440
Step 1. Identify all wires that intersect obstacles. For each 2X Small 8.4 12.2 220
point-to-point connection, perforshortest-path maze routing g;g gma” ég-g ig-g 15150
around the obstacles. For subtrees that cross an obstade, fi ma - -

TABLE Il

L-shaped segments that link points inside and outside the
obstacle. For each L-shape, choose one of the two possible
configurations that minimizes overlap with the obstacle.

Step 2.When a wire crosses an obstacle, Contango captu
an entire subtree enclosed by the obstacle (see Figure 8).
total capacitance of the subtree is then measured and cethpar Given a clock tree with buffers, it is easy to increase the

to the capacitance that can be driven by the driving bufféency of a given sink, but it is difficult to speed up a sink.
without risking slew violations. Sub-trees that can be ehiv Therefore, our strategy is to first make sinks as fast as lpiessi
by the driving buffer do not require detours. and then reduce skew with wiresnaking and wiresizing. When

Step 3. For obstacles crossed by a subtree that cannot be
safely driven by the driving buffer, Contango establishes a
detour along the contour of the obstacle as follows. First, t
entire contour is considered a detour. Then, to ensure that v

the clock network remains a tree, one segment is removed _ _
between tree sinks adjacent along the contour. If we were P _|_ T
to minimize total capacitance, we would remove the longest |

segment of the contour between two adjacent tree sinks. | ?
However, we minimize the longest detoured source-to-sink + Longest

INVERTER ANALYSIS FORISPD’09 CNSBENCHMARKS.

.ﬁﬁslnitial buffer insertion with sizing

‘ Detour ‘ ‘Segment removed ‘

path, and thereforeemove the segment furthest from the tree <« segment
source(counting distances along the contour). In other words,
we first find the sink most distant from the source along the i

contour, and include in the detour the entire shortest [etthet

source. The other segment incident to the sink is removed, big. 3. Anillustration of our detouring algorithm. Smalllisocircle indicates
the shortest path from its other end to the source is i”C'UdE‘%ﬁ source of detour, larger circles indicate sinks. Theuteis shown with

i dotted lines.
(see Figure 3). otted lines




buffers are inserted into an Elmore-balanced tree, saorce-boundary, DME algorithms generate a long wire leading to
sink paths contain practically the same numbers of buffeas ( the center of the chip, and the tree branches out from the
be off by one in some cases). center. This long wire — thé&ree trunk— is later populated

We adapted thé(nlogn)-time variant of van Ginneken’s with a chain of inverters, which can be up- or down-sized
algorithm from [26]. Due to its speed, it can be launchedithout significant impact on skew because this equallyctdfe
with different inverter configurations, effectively perfoing all sinks. However, since roughly 1/3 to 1/2 of sink latency
simultaneous optimization across multiple parameters: Og due to the tree trunk, it accounts for a large fraction of
experiments indicate that driver strength is a major fagtor variational impact on latency.
moderating the impact of supply-voltage variations. Thae The trunk’s variational impact is different for voltage and
to reduce the variational part of CLRZ%-T2? (Section process variations, and this must be accounted for duritig op
[1I-C), Contango performs fast buffer insertion with diffmt mizations. Stronger buffers in the trunk reduce the setitsiti
composite buffers until it finds the best-performing saloti of latency tosupply voltage(e.g., in the case of different
with strongest composite buffers within 90% of the powgpower modes), and help optimizing the CLR objective from the
limit. Slew-constraint violations are not a concern at fhoént  ISPD 2009 contest. However, process variations in the tdank
since minimizing delay involves avoiding high slew-ratec@ll not affect skew. In the ISPD 2010 contegtpcessvariations
that there is positive correlation between delay and sk@}r were included in the skew constraint, while the primary
The experiments on various clock trees with initial buffepbjective was tominimize total capacitanceTherefore, one
insertion suggest that even the worst slew-rate is well undgf successful strategies weeakenthe buffers in the tree trunk
60% of the slew limit. We reservg= 10% of power budget and avail the capacitance saved to other optimizations.
to facilitate more accurate optimizations.

The O(nlogn) variant of van Ginneken’s algorithm [26] E. |terative buffer sizing
used in our work assumes that all available clock buffers

preserve polarity_, therefore the use of invertgrs typ}ch_ialhds iterative buffer sizing. First, this algorithm sizes up feu$
to incorrect polarlt.y at some sinks. Th(_a buffermg algcmthan in the tree trunk. At thei-th iteration of buffer sizing,
be extended to dm_actly "?‘CCOU”F for smk polarity, or |t_qaa1 bContango sizes up the composite inverters by at nppst
_post—processeq by Inserting additional inverters qeéassmth 100/(i+3)%. The iterations continue until results improve
incorrect polarity. To this end, we use the polarity-coti@t

approach described in our conference paper [20]. In pmctiWithOUt slew violation. Buffer sizing in tree branches ine@a
: : " _ ' reater capacitance penalty. To compensate, Contan rr
it requires very few additional buffers, and its skew oveltlhe% P P Y P 9o

. capacitance by downsizing bottom-level buffers.

IS S.‘m.a” gnough to be compensated for by our doWnStre"’lml—mwever, sizing up buffers after the trunk often makes the

optimizations tree unbalanced in terms of skew and results in greater load
for the following skew optimization algorithms. For better

D. Buffer sliding and interleaving performance of skew optimizations, typically 4 or 5 levels

We now discuss targeted improvement of robustness Eter the first branch are sized up by capacitance borrowing

variations in device performance. The iterative buffeiingjz buffer sizing algorithm.
introduced in Section IV-E is primarily used to reduce the ) o
variational component of CLRTEY-T2?), while buffer F. Iterative top-down wiresizing
sliding and interleaving are applied as preliminary steps.Before skew optimization, Contango computes slow-down
Extensive experiments suggest that the impact of variation slacks at every edge as described in Section 111, and\jf¥
skew is best reduced k) decreasing sink latency (insertionparameters. This suggests the amount by which a given tree
delay), and(ii) using the strongest possible buffers. Since o@tge can be slowed down before skew would be negatively
initial buffer insertion algorithm focuses on the formertnte affected. Since fast sinks often cluster together, skewbzan
with the latter metric as a secondary objective, it is pdssiblowered by slowing down either many bottom-level wires or
to further improve the variational component of CLR}®V-  few wires higher in the tree. Our top-down algorithm pursues
Té-zv) by emphasizing the latter metric. Therefore, based ahe latter, seeking to minimize tree modifications.
the results of initial buffer insertion, Contango attemjptsize We build an ad hoc linear model based on the im-
buffers up. pact of downsizing a unit-lengthl,fs) wire segment. Con-
Sizing up a single inverter increases its input pin capacia tango chooses several independent wire segments with same
and can lead to slew violations. To prevent such violatiins,length (ys) in the middle of the tree and downsizes them to
is often possible to slide the inverter up the tree to reduobserve the impact on latencies of downstream sinks, ergsuri
upstream wire capacitance and interleave an inverter whibiat every sink is affected by only one downsized wire. This
two inverters move too far apart after sliding. The increasequires a single SPICE run and produces a single parameter
in downstream wire capacitance is balanced with the ineredk,s — maximal latency increase by downsizing a unit-length
in the inverter’s driving strength. Sizing a single invemeay (lws) wire segment. When downsizing a wire, the scaling factor
increase the skew and require further correction. Theeefok is calculated based o8lack divided by Tys andk x |y of
we focused on the top-most levels of the tree, whose impale wire is down-sized. Whekis small, the latency increases
on skew is relatively small. Given a clock source at the chgdmost linearly since the down-sized length is much smaller

After sliding and interleaving top-level buffers, we invak



Algorithm 1 IterativeWireSizing based on empirical analysis of the 45nm technology used at

Tws = TwsEstimation(); the ISPD contest before contest benchmarks became aeailabl
repeat The applicability of wiresnaking depends on the VLSI contex
SaveSolution(); ComputeWireSlacks(); If the clock tree is competing for routing resources withnsig
Q = {root}; RSlack= {0}; i =0; nets, then every effort should be taken to reduce the tidiza
while i < sizg Q) do of routing resources. In particular, wiresnaking cannotibed
if (SlackQi] — RSlack> Tys) then in areas of routing congestion (also, clock trees shoulddavo
k = (SlackQi] — RSlack) /Tus; such areas to minimize crosstalk noise). On the other hand,
DownSizeWire[Q],K); RSlackt = kTys; some ICs include abundant routing resources. This is the cas
end if for pad-limited designs and designs whose area is detedmine
for j =1 to SizeChild[Q;]) do by large IP blocks. The number of available metal layers
Q.pushChild[Qi][j]); RSlackpushRSlack); also plays a major role in the design of clock trees, and can
end for vary dramatically between different designs, ranging frém
++i; to 12 layers as of 2010. In some high-performance designs,
end while clock networks are given a dedicated metal layer, which make
SpiceSimulation(); wiresnaking much more attractive.
until (no improvement| slew violation) One of the top-three teams at the ISPD 2009 clock-tree

routing contest (NTU [27]) usedangling wiresinstead of
wiresnaking. Rather than elongate a route, this strategg ad

than the length of the wire. Therefore we can estimate treat tA d€ad-end branch. The goal is to increase wire capacitance,
maximum latency increase is equal to or less thariTys. To and Fherefor_e increase the delay. In comparing danglingswir
utilize this linearity, we limitk by kmax kmaxis experimentally t0 wire-snaking, we note that the former does not alter the
determined by observing the threshold at which the lingariféSistance that affects propagation delay. Thereforechieae
breaks significantly. Also, the scaling factorcan be limited @ Particular slow-down, a much longer wire-branch is needed
by slew constraints. Wiresizing typically increases slater On the positive side, the dependence of delay increase on
because of increase in resistance. Even thoughknax holds, branch length is linear, and this may allow for more accgrate
Contango does not allow any downsizing on a wire whodining. In other words, this technique offers a potentially
downstream node has slew rate above 80% of the slew linffeater accuracybutsmaller rangebecause the range of such
Since we selected,s as the maximal latency increase?ptimiz"?‘tions_ is limited by the capacitance budget. Thenesf
from the SPICE simulation, the actual increase (calculatéfgdangling wires are found useful, they should be used at a
by SPICE) is smaller — our modifications are intentionallft€r stage in the optimization flow.
conservative to avoid excessive increase of latency, whi . . . Lo
increases the maximal latency of the tree and consequently Bottom-level fine-tuning & limits to further optimizatio
causes increase of slack for the entire tree. After runningAfter two top-down skew reduction phases, skew becomes
SPICE, collecting sink latencies and recomputing slow-alovsmall enough to perform bottom level optimizations. Bottom
slacks, Contango repeats top-down wiresizing to reduce ski€vel wiresnaking optimize the wires directly connected to
based on current data. This process is performed iterativéinks. This technique is more accurate than the top-down
until the objective function (CLR or nominal skew) Stop§ptimizati0ns since each sink is tuned individually. Con-

improving. Iterative wiresizing is detailed in Algorithm 1 tango performs SPICE-driven bottom-level wiresnakingilunt
the results stop improving. Typically the gain of bottom-

, i , level tuning is under @s but can be a significant fraction

G. lterative top-down wiresnaking of remaining skew.

Wiresizing can reduce large skew by applying small We found that with skew 5ps, the corner sinks of rising
changes, which is appropriate after the initial tree carcsion.  transition and falling transition are often different. $hise-
An experienced clock-network designer suggested to usath&tll divergencemakes further improvements to the clock tree
small amount of wire-snaking is often used to improve clockery difficult. Indeed, reducingising skewby slowing down
skew, as long as added capacitance does not significarglyt afla fast sink for rising transitiormay increasdalling skewdue
power. Wiresnaking alters a given route so as to increase titsexcessive slowdown of slow sink for falling transitionin
length and can be applied on fast paths. the Contango flow, the average skew after bottom-level tunin

We develop an accurate top-down wiresnaking process,3.21pson ISPD’09 CNS contest benchmarks.
which we invokeafter top-down wiresizing. This step uses Table Ill shows the improvement of CLR and skew by each
the same slow-down slack computation we described earlieptimization algorithm. Note that after iterative bufféziag
A SPICE simulation is performed (other accurate delay moddiBSz), skew is increased but CLR does not change much.
can be used) to measuTg,, the worst-case delay of wires-This implies that TBSz reduced the variational part of CLR
naking with unit lengthlun. lwn affects the accuracy of the (T3 -T4?) significantly. TBSz is performed before skew
wiresnaking algorithm; smalldy,, offers greater accuracy butoptimization because it increases the skew part of C@-‘x’?\(
typically leads to more SPICE runs since skew reduction TFﬁl'ZV). The increased skew is reduced belowsfter our
each round of top-down wiresnaking is smallgy, was set skew optimizations.



ISPDO9F11 ISPDO9F12 1ISPDO9F21 ISPDO9F22 ISPDO9F31 ISPDO9F32 1ISPDO9FNB1

CLR | Skew | CLR | Skew | CLR | Skew | CLR [ Skew | CLR | Skew | CLR | Skew | CLR | Skew
INITIAL 56.18 | 30.58 | 75.81| 48.96 | 89.29 | 59.17 | 52.01 | 31.55| 151.8| 116.5| 121.6 | 88.19 | 31.86 | 21.15
TBSz 55.61 | 46.78 | 80.03 | 66.24 | 89.49 | 76.31 | 43.16 | 33.65| 140.3 | 129.2 | 110.7 | 98.27 | 31.54| 21.13
TWSz 23.38 | 15.07 | 19.70| 8.127 | 26.00 | 12.25| 16.35| 6.933 | 43.08 | 32.21 | 27.23 | 14.84 | 30.75| 20.44
TWSN 13.75| 2.929 | 16.21| 3.384 | 17.60| 2.826 | 12.58| 1.99 | 12.81| 3.91 | 17.92 | 4.594 | 13.94 | 3.149
BWSN 13.36 | 2.867 | 15.27 | 2.611 | 17.40| 2.738 | 12.36 | 2.227 | 12.81| 3.91 | 17.92| 4.594 | 13.40 3.5

TABLE Il
PROGRESS ACHIEVED BY INDIVIDUAL STEPS OFCONTANGO ONISPD‘0O9BENCHMARKS: THE FIRST LETTER IN EACH ACRONYM INDICATES TOPDOWN
(T) OR BOTTOM-LEVEL (B) OPTIMIZATION, SECOND LETTER DIFFERENTIATES WIRE$W) FROM BUFFERS(B), WHILE “SZ” STANDS FOR“SIZING” AND
“SN” STANDS FOR"“SNAKING”. GRAY HIGHLIGHTS INDICATE WHETHER SKEW ORCLR WAS THE PRIMARY OPTIMIZATION OBJECTIVE

V. EMPIRICAL VALIDATION obstacles introduce extremely high skew. Our wiresizing ca

To validate our proposed techniques, we first present ESLHE refined, but probably not beyond the accuracy of subséquen

on ISPD'09 benchmarks with detail comparison to state-oW'resnaking' In pragt.ice, Wiresnaki_ng is very limited, ss.)t_a
the-art academic clock network synthesis tools according RreServe the routability of signal wires (unless clock mdris
the contest protocol, then discuss the significance of §pecPiven & dedicated metal layer). Dangling wires, used by NTU
optimizations used by Contango, and then evaluate the-scalgt€ad of wire snaking, would be even less acceptable.
bility of our C++ implementation on larger benchmarks from To further study th(_a relative S|gn|f|c_:ance of optimizatioms
our industry colleagues. We measured runtimes on a 2.4GH2Ntango, we show in Table 1V the impact of removing each

Intel QuadCore CPU running Linux, similar to CPUs used Skew optimization step from the flow. It can be seen that each
the ISPD contest. step is necessary to achieve competitive results. Removing

ISPD'09 benchmarks include seven 45nm chips up tc)top_—dc_)wnl wiresizing effects the greatest impact becaui;ae th
17mmx 17mmin size, with up to 330 selected clock sink&Ptimization offers the greatest range, and subsequeit opt
[29]. Table V compares results of our software Contango fgizations cannot fully compensate for its omission.

the top three teams of the ISPD‘09 clock-network synthesis

contest. On average, Contango reduces CLR.Bx, 3.99x  godoefiz || Full flow | wio TWSz | w/o TWSn | w/o BWSn
and 2.35x versus contest results by NTU, NCTU and U, TwSz -58.11ps - 58.11 58.11
of Michigan respectively, excluding failures of NTU and TWSn -4.740 -33.51 - -4.740
NCTU on benchmarks with many obstacles. All results ate BWSn -0.773 0 -2.494 -
within the capacitance limits, but Contango nearly exhaust Skew 2611 14.92 5.633 3.384
the limits as a part of its strategy. On ISPD'09 benchmarks, TABLE IV

maximum sink latency averages 13D while the average THE'FULLFLOW’ COLUMN SHOwSskew changeT EACH STEP IN THE
number of composite-buffer locations is 223. A clock tredétbu CONTANGO FLOW, AND THE FINAL SKEW. ACRONYMS ARE DECODED IN
by Contango is shown in Figure 4. THE CAPTION OFTABLE Ill. SUBSEQUENT COLUMNS SHOW THE IMPACT

More recent results for ISPD‘O9 benchmarks from ASP- OF REMOVING ONE OPTIMIZATION. THESE RESULTS ILLUSTRATE THE
DAC‘10 [21], [23], [27] are summarized in Table VI. The rangeoF EACH OPTIMIZATION AND ITSimpact on final results
results in Table VI show that Contango outperforms NTU

and NCTU by skew and CLR. HKPU [23] claims a 20% . _ ) o
advantage in CLR, but more than doubles nominal skepcalability studies. The ISPD'09 contest was limited to

Another interesting aspect of the HKPU work is that they rel hrealistically small numbers of sinks due to limitatioriste
on SPICE very little in their optimizations and instead usgPen-source ngSPICE software [32] it relied upon. To evalua

the Elmore delay model, which explains their low runtimeé.,e spalability of our optimizations, we ?p'ace_d ngSPICE
The algorithms in [23] focus entirely on the optimization oYV'th industry-standard HSPICE software [33|orking with

nominal skew, which does not explain the results — hig?n rege_znt Texa_s Instruments_ chip size@mmx 3.0mm we
nominal skew and low CLR. As the authors of [23] havg]lentlfled locations of 135K sinks and randomly sampled them

kindly provided their clock trees on our request, we obseryd® create a family of benchmarks. For this experiment, our
that those trees use very large buffers at the top levels @0rithm used groups of large inverters instead of grodps o
the tree (including but not limited to the trunk) and smalff Parallel small inverters, improving runtime eightfoldthe

buffers toward the sinks. This strategy minimizes the irmpa(f:OSt O_f increasing CLR and skew_ by 1'293 _and increasing
of supply voltagevariations, but makes it more difficult to capacitance by 15%. It produced highly-optimized clocksre

optimize nominal skew given a limited capacitance budget.W'thI upllto 50|K 5|_nrl]<s.hTabIe \é” Sh?W_S lihat to(';al l((:apacnange
Significance of individual optimizations. Several optimiza- scales linearly with the number of sinks, and skew remains

tions we have implemented were superseded by more powe.ﬂJFiEggFé‘EThe ngmbir Og HISPICIIE( runs grows very slowly,
techniques. For examplskew reduction by buffer insertion ut remains the bottleneck.

was unnecessary and undermined the robustness to vasiatiorthe numbers produced by ngSPICE and HSPICE were fairly cloie
However, it can be used as a last resort when detours arothedmain difference being runtime and scalability.



CONTANGO(THIS WORK) NTU NCTU U. OF MICHIGAN
Benchmark 9/10/2009 3/30/2009 3/30/2009 3/30/2009
CLR | Cap. ® CLR | Cap. ® CLR | Cap. ® CLR | Cap. ®
ispd09f11 13.36 | 99.61| 6488 | 26.71| 85.53| 14764 | 22.31 | 89.90 | 23358 | 32.29 | 73.86 | 3892
ispd09f12 15.27 | 99.99 | 6564 | 25.73| 84.72| 13934 | 22.18 | 87.86 | 14992 | 32.17 | 73.45| 3944
ispd09f21 17.40 | 96.74| 6673 | 30.54| 80.79 | 14978 | 19.61 | 86.65 | 26420 | 34.31 | 74.30 | 4587
ispd09f22 12.36 | 97.43 | 3618 | 2451| 81.82| 7189 | 16.38 | 85.01 | 9432 | 30.45| 70.01| 2005
ispd09f31 12.81 | 98.29 | 21379 | 45.07 | 73.49| 40088 | 212.0 | 92.38 | 1.29 | 51.34| 81.53| 17333
ispd09f32 17.92 | 99.24 | 12895 | 36.90 | 80.14 | 3566 fail - - 40.32 | 77.39 | 10599
ispd09fnbl || 13.40 | 78.38 778 fail - - fail - - 19.84 | 63.10| 477
Average 1465 | 95.66 | 8342 | 31.57| 81.08| 15753 | 58.49 | 88.36 | 14841 | 34.39 | 73.38 | 6120
Relative 1.0 1.0 1.0 215 | 085 | 189 | 399 | 092 | 1.78 | 235 | 0.77 | 0.73

TABLE V
RESULTS ON THEISPD'09 CONTEST BENCHMARK SUITE CLR IS REPORTED INPS, CAPACITANCE IN % OF THE LIMIT SPECIFIED IN BENCHMARKS AND
CPUTIME IN S. BEST RESULTS FROM THHSPD'O9CONTEST AND BEST RESULTS OVERALL ARE SHOWN IN BOLDRUNTIME IS DOMINATED BY SPICE
RUNS. IT WAS NOT USED FOR SCORING AT THESPD‘09CONTEST AND CAN BE IMPROVED BY USINGFASTSPICE, ARNOLDI APPROXIMATION, ETC.

CONTANGO NTU NCTU HKPU
Benchmark this work) [27] [21] [23]
CLR | Skew ® CLR | Skew ® CLR | Skew ® CLR | Skew | ©
ispd09f11l 13.36 | 2.867 | 6488 | 19.71| 4.478 | 4639 | 18.77| 7.12 | 30787 | 12.2 — 180
ispd09f12 15.27 | 2.611 | 6564 | 17.46 | 4.088 | 4231 | 155 | 3.06 | 27622 | 10.9 — 213
ispd09f21 17.40 | 2.738 | 6673 | 19.92 | 3.868 | 4629 | 17.04| 3.02 | 33056 | 12.1 — 210
ispd09f22 12.36 | 2.227 | 3618 | 16.47 | 3.671| 3937 | 16.25| 4.11 | 19136| 9.9 — 113
ispd09f31 12.81| 3.91 | 21379 | 31.13 | 4.762 | 11112 | 22.63| 7.58 | 66588 | 13.4 — 777
ispd09f32 17.92 | 4594 | 12895 | 23.04 | 4.234 | 7293 | 20.59 | 5.52 | 49907 | 11.5 — 420
ispd09fnbl || 13.40| 3.5 778 | 15.73| 6.798 | 3719 | 14.32| 3.77 | 7643 | 13.8 — 82
Average 1465 3.207 | 8342 | 20.49| 456 | 5651 | 17.87| 4.88 | 33534 | 11.97| 7.72 | 285
TABLE VI

RESULTS FROMASPDAC’'10CLOCK ROUTING PAPERS ON THHSPD‘09 CONTEST BENCHMARK SUITE[21], [23], [27]. RUNTIMES MAY BE FROM
DIFFERENT WORKSTATIONS CLR AND SKEW ARE REPORTED INPSAND CPUTIME IN S. ONLY AVERAGE SKEW WAS PUBLISHED FORHKPU [23].

VI. CONCLUSIONS and are amenable to embedding into design fl&exzondwe
develop an EDA methodology for integrating clock-network

algorithms, but does not describe end-to-end solutions 98tlm|zat|0n steps.Third, we describe a robust software

clock-network synthesis that can handle modern intercmn%mplet':erl];ag'g% s;:alle? Ctonztgntg)]o, trf\attoutpfetr\;‘é)dr:ms ??ﬂm
Our work makes several contributions to this errst, romthe contest [29] by a factor o -ourth, we

we develop specialized optimization algorithms necesiaamryscgIe ogr |mpt:ementat|on o [qrg(T mdulstrlal clockhngtvsork
bridge the gaps between well-known point-optimizationsr O ased on their strong empirical results, our techniques may

emphasis is on robust techniques, that do not require tunhqg)rove t.iming and power of futu_re ASICs an-d SoCs [9]. In
CPU designs, our trees can be integrated with meshes [25].

Here, better trees may facilitate smaller meshes and reduce
power consumption, which can be traded off for higher per-

Existing literature on clock networks offers several etgga

L formance or longer battery life in portable applications.
# sinks [[ CLR, ps | Skew, ps| Latency, ps| Cap., pF ®©, min
I 200 13.47 2.124 506.8 5221 | 22 (20)
i 500 14.84 2.174 528.0 99.53 6.28 (20)
1K 17.53 3.138 543.1 162.3 12.5 (20)
i 2K 16.56 3.136 543.9 276.1 19.3 (15)
i 5K 23.20 3.853 538.5 591.1 99.6 (22)
10K 25.54 5.562 538.0 1130 | 352.8 (23)
i 20K 32.47 10.46 546.8 2243 1867 (35)
i 50K 31.52 8.774 545.1 5243 | 16027 (45)
- TABLE VI

SCALABILITY ON TEXAS INSTRUMENTS BENCHMARKS THE

Fig. 4. The clock tree produced by Contango ispd09fnbi. Sinks L ATENCY” COLUMN REPRESENTS MAXIMUM1.2V LATENCIES.
are indicated by crosses, buffers are indicated by blueamgtes. SPICERUNS ARE COUNTED IN PARENTHESIS
L-shapes are drawn as “diagonal wires” to reduce cluttemesVi

are colored by a red-green gradient to reflect slow-downks|aas 3The use of two wire sizes, two inverter types, and two processers in

described in Section 1I-B. The impact of wiresnaking is wmall the ISPD'09 contest is not a limitation of our algorithms andthodology.
to be visible. Likewise, any accurate delay evaluator can be used, ingudiastSpice,

Arnoldi approximations, etc.



(1]
(2]

(3]
(4]
(5]
(6]
(7]
(8]

[9]
[10]

(11]

[12]

(23]
[14]

[15]

[16]
[17]

(18]

[19]
[20]
[21]

[22]

(23]
[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

(33]

REFERENCES

C. Albrecht et al, “On the Skew-Bounded Minimum-Buffeo&ing Tree
Problem,”IEEE Trans. on CAR2(7), pp. 937-945, 2003.

C. Alpert et al, “Minimum Buffered Routing with Boundeda@acitive
Load for Slew Rate and Reliability ControlEEE Trans. on CA22(3),
pp. 241-253, 2003.

K. D. Boese, A. B. Kahng, “Zero-Skew Clock Routing TreeghaMin-
imum Wirelength,”ASIC92, pp.17-21.

T.-H. Chao, Y.-C. Hsu, J.-M. Ho, “Zero Skew Clock Net Rimg"
DAC92, pp. 518-523.

T.-H. Chao et al, “Zero Skew Clock Routing with Minimum ¥&length,”
IEEE Trans. on Circ. & Sys.39(11), pp. 799-814, 1992.

J. Cong et al, “Bounded-Skew Clock and Steiner Routifg;M Trans.
on Design Autom. of Elec. SyE998, pp. 341-388.

M. Edahiro, “A Clustering-Based Optimization Algorithin Zero-Skew
Routings,”DAC93, pp. 612-616.

L. v. Ginneken, “Buffer Placement in Distributed RCr&letworks For
Minimal Elmore Delay,"ISCAS90,pp.865-868.

P.-H. Ho, “Industrial Clock Design,ISPD09, pp. 139-140.

R. Ho, K. Mai, M. Horowitz, “The Future of WiresProc. IEEE 89(4),
pp. 490-504, 2001.

J. Hu, A. B. Kahng, B. Liu, G. Venkataraman and X. Xu, “Adbhl
Minimum Clock Distribution Network Augmentation Algorith for
Guaranteed Clock Skew YieldASPDAQ)7, pp. 24-31.

S. Hu, C. Alpert, J. Hu,S. Karandikar, Z. Li, W. Shi and-iC. Sze,
“Fast algorithms for slew constrained minimum cost buffgri IEEE
Trans. on CAD 26(11), pp. 2009-2022, 2007.

S. Hu, Q. Li, J. Hu, P. Li,“Utilizing Redundancy for Timg Critical
Interconnect,"TVLS| 15(10), pp.1067-1080, 2007.

J.-H. Huang, A. B. Kahng, C.-W. Tsao, “On Bounded-Skeauthg
Tree Problem,'DAC95, pp.508-513.

F. Huebbers, A. Dasdan, Y. Ismail, “Multi-Layer Intermect Perfor-
mance Corners for Variation-Aware Timing AnalysisCCAD'07, pp.
713-718.

A. B. Kahng,C.-W. Tsao,“Practical Bounded-Skew Cldekuting,” J.
VLSI Signal Proc16(1997), pp.199-215.

A. B. Kahng et al, “Interconnect Tuning Strategies faghtPerformance
ICs,” DATE98, pp. 471-478.

V. Khandelwal, A. Srivastava, “Variability-Driven Famulation for Si-
multaneous Gate Sizing and Post-silicon Tunability Altama” IEEE
Trans. on CAD 27(4), pp. 610-620, 2008.

W.-C. D. Lam et al, “Statistical Based Link Insertionr fRobust Clock
Network Design,”ICCAD05, pp. 588-591.

D. Lee, I. L. Markov, “Contango: Integrated Optimizati of SoC Clock
Networks,” DATE10, pp. 1468-1473.

W.-H Liu, Y.-L Li, H.-C. Chen, “Minimizing Clock Lateng Range in
Robust Clock Tree SynthesisfSPDACLO, pp. 389-394.

J. Long, H. Zhou, S.O. Memik, “An O(nlogn) Edge-Basedyédithm
for Obstacle-Avoiding Rectilinear Steiner Tree Constiarct ISPD08,
pp. 126-133.

J. Lu et al, “A Dual-MST Approach for Clock Network Symis,”
ASPDACI0, pp. 467-473.

C.-L. Lung et al, “Clock Skew Optimization Considerif@pmpilicated
Power Modes,"DATE 2010, pp. 1474-1479.

R. S. Shelar, “An Algorithm for Routing with Capacitaibistance
Constraints for Clock Distribution in MicroprocessorsSPD09, pp.
141-148.

W. Shi, Z. Li, “A Fast Algorithm for Optimal Buffer Ins¢ion,” IEEE
Trans. on CAD24(6), pp.879-891,2005.

X.-W. Shih et al, “Blockage-Avoiding Buffered Clockr@e Synthesis
for Clock Latency-Range and Skew MinimizatiorASPDACLO, pp.
395-400.

X.-W. Shih, Y.-W. Chang, “Fast Timing-Model IndepemdeBuffered
Clock-Tree SynthesisDAC'10, pp. 80-85.

C. Sze, P. Restle, G.-J. Nam, C. J. Alpert, “ISPD 2009coetwork
Synthesis Contest,1ISPD09, pp. 149-150.htt p: //ww. si gda.
org/ispd/contests/ispd09cts. htm .

R. S. Tsay, “An Exact Zero-Skew Clock Routing AlgoritimEEE
Trans. on CAD12(2), pp.242-249, 1993.

W. Zhao, Y. Cao, “New Generation of Predictive TechmyyldModel for
Sub-45 nm Early Design ExplorationEEE Trans. on Electron Devices
53(11), pp. 2816-2823, 2006.

Nenzi P, “NG-SPICE: The Free Circuit  Simulator,”
http://ngspice.sourceforge.net/.

HSPICE,Simulation and Analysis User Guid8ynopsys, Inc., Mountain
View, CA, 2003. Release U-2003.03-PA.

10



