
On Bottleneck Analysis
in Stochastic Stream Processing

Raj Rao Nadakuditi, University of Michigan

Igor L. Markov, University of Michigan

Past improvements in clock frequencies have traditionally been obtained through technology scal-
ing, but most recent technology nodes do not offer such benefits. Instead, parallelism has emerged

as the key driver of chip-performance growth. Unfortunately, efficient simultaneous use of on-chip

resources is hampered by sequential dependencies, as illustrated by Amdahl’s law. Quantifying
achievable parallelism in terms of provable mathematical results can help prevent futile program-

ming efforts and guide innovation in computer architecture toward the most significant challenges.

To complement Amdahl’s law, we focus on stream processing and quantify performance losses due
to stochastic runtimes. Using spectral theory of random matrices, we derive new analytical results

and validate them by numerical simulations. These results allow us to explore unique benefits of

stochasticity and show how and when they outweigh the costs for software streams.

Categories and Subject Descriptors: C.4 [Computer Systems Organization]: Performance of

systems—Modeling techniques

General Terms: stream processing, stochasticity, random matrices

Additional Key Words and Phrases: stream processing, stochasticity, random matrices

1. INTRODUCTION

Parallel processing allows designers to lower clock frequencies necessary to achieve
desired throughput by dividing computation between multiple computational cores.
This can significantly improve power-performance trade-offs and boost chip perfor-
mance beyond clock-frequency limitations. However, many applications do not
exhibit straightforward parallelism and require significant restructuring, as well as
support from the operating system and CPU architecture. To this end, achieving
efficient parallelism through hardware engineering and improved software stack has
been a key challenge in electronic system design [Asanovic et al. 2009].

Past experience with attempts at greater parallelism suggests a pattern of di-
minishing returns exemplified by Amdahl’s law [Amdahl 1967].1 Its most imme-
diate conclusion is that a narrow focus on component improvement usually yields
a smaller benefit than intuitively expected. Amdahl’s law also shows that each
new processor contributes less usable power than the previous processor. Applied
to software programs with sequential dependencies, Amdahl’s law helps determine
where speed-ups would be most beneficial.

Amdahl’s law was refined for multiple active tasks in [Agrawal et al. 2006]. In
particular, the single-chip and full-system performance can be scaled significantly
through streaming — a form of parallelism achieved by processing several dependent
tasks simultaneously on unrelated data, such that job k+1 can commence before job

1Amdahl’s law assumes a chain of tasks and upper-bounds the expected overall performance

improvement when only one task is improved [Hill and Marty 2008].

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001, Pages 111–132.

112 · Raj Rao Nadakuditi et al.

k is finished. Streaming is particularly effective when each processing stage is imple-
mented in dedicated hardware, e.g., graphics pipelines in modern GPUs contain up
to 200 specialized processing stages. Wireless communications, cryptography, and
video decoding are also processed by deep pipelines with such dedicated stages as
fast Fourier transforms (FFT), discrete cosine transforms (DCT), finite-impulse re-
sponse filters (FIR), Viterbi coding, standard cryptographic primitives (AES, MD5,
DSA), motion estimation. Dedicated circuits offer greater performance and lower
power than equivalent software implementations. They remain busy when process-
ing multiple batches of structurally similar data — pixel patches, voice frames,
encrypted blocks, etc. Similar effects can be observed in embedded systems with
task-specific CPUs that support customized instructions, zero-overhead loops, and
special-purpose interconnect: high-end printers, cameras and GPS navigation sys-
tems use up to ten ARM- and Tensilica-style CPUs apiece. In software, processing
streams are illustrated by EDA tool-chains, where different blocks of a chip can be
streamed through synthesis, placement and routing, static timing analysis (STA),
design-rule checking (DRC), as well as design for manufacturing (DFM).

To limit idle time and power consumption of stream processors, stage execution
times must be balanced. For example, consider a three-stage pipeline with stage
execution times 1, 2 and 3. Stage 3 is always busy, while stages 1 and 2 idle two out
of three cycles and one out of three cycles, respectively. Thus, instead of producing
nine units of work every three cycles, the pipeline produces only six units of work,
i.e., runs 33% idle. This example illustrates a design weakness, where work was
not equally partitioned among the stages. However, even perfect design-time par-
titioning of work among stages cannot fully account for irregular or unpredictable
input. For example, audio frames with a busy signal can be decoded faster than
normal voice frames; some video frames exhibit less motion than others. A real-life
audio-video decoder with stochastic stage-processing times is studied in [Manolache
et al. 2007a]. In a different domain, the performance of GPGPU programs process-
ing irregular data is hard to predict accurately due to (i) long graphics pipelines
and (ii) increasing user-hardware separation encouraged by CUDA programming.
Networks-on-chip (NoCs) experience similar challenges, but can handle more irreg-
ular compute loads — real-time NoC applications with stochastic execution times
are studied in [Manolache et al. 2007b], whereas statistical-physics techniques were
applied to NoC characterization in [Bogdan and Marculescu 2009] and exploited for
performance optimization as in [Bogdan and Marculescu 2011a]. Stochasticity in
processing rates arises from non-uniform memory access in the IBM/Sony/Toshiba
Cell processor and from unpredictable cache misses in streaming software. Sta-
tistical traffic analysis in multicore platforms was studied in [Bogdan and Mar-
culescu 2011b]. From the software perspective, randomized algorithms (such as
simulated annealing, Fiduccia-Mattheyses netlist partitioning and Boolean satisfi-
ability solvers with random restarts) exhibit stochastic runtimes and, sometimes,
large-scale statistical phenomena such as phase transitions.

Our work develops performance modeling of processing pipelines (streams). We
describe (stochastic) stage execution times by random variables and compare the
performance of such stochastic pipelines to the performance of their determinis-
tic variants, where execution times (latencies) correspond to the means of original

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.

On Bottlenecks in Stochastic Stream Processing · 113

random variables. Given that stochastic variants require longer time to complete
processing than deterministic variants, we quantify these losses in processing effi-
ciency. Important research questions target the magnitude of those losses and their
sensitivity to changes in pipeline configurations. Anticipating pipelines/streams
with numerous stages, we study the scaling of efficiency losses with the number of
stages. We analytically derive scaling trends and observe good fits to numerical
simulations.

One remarkable scaling trend is observed for pipelines with a single bottleneck
where all stages can simultaneously process streaming data (this setting mirrors
Amdahl’s analysis, but with looser constraints on parallelism). Here, we analyti-
cally derive and numerically confirm an unexpected phase-transition2 — speeding
up a bottleneck (by allocating greater CPU resources) brings (i) diminishing re-
turns until the threshold is reached and (ii) no returns past the threshold, even
when the bottleneck is improved. These trends hold for a broad range of stage-time
distributions (although we start our exposition by using exponential distributions).

The phase transition separates a regime in which the presence of a finite o(n)
number of slow or bottleneck stages results in the latency being normally distributed
with variance having an O(n) leading order term to one in which the bottleneck
servers are present but the latency has a Tracy-Widom distribution with having a
O(n2/3) leading order term, which also corresponds to the distribution and scaling
when there are no slow servers.

In addition to the costs of stochasticity in stream processing, we note opportuni-
ties for exploiting stochasticity to improve performance. Mean stage latencies can
be reduced by launching independent runs, waiting for the first run to complete,
and terminating remaining runs. Our analytical results enable a comparison of
costs and benefits of stochasticity in improving bottlenecks of software streams.

The remaining material is organized as follows. Basic concepts and terminology
are reviewed in Section 2 along with relevant literature. Section 3 shows how to cal-
culate end-to-end latency of deterministic streams and contrasts the use of queuing
theory and random-matrix theory in the analysis of stochastic streams. Sections 5
and 6 derive the cost of stochasticity for balanced and unbalanced streams, resp.
The assumption of exponential distributions made to derive key results is overcome
in Section 7. In Section 8, we quantify the benefits of stochasticity for software
streams and compare them to the costs. Conclusions are given in Section 9.

2 The term phase transition originally arose in thermodynamics to represents a qualitative change
in statistical properties of a multi-particle system, such as freezing and evaporation of liquids,

melting and sublimation of solids, condensation and deposition of gases, as well as transitions

between gases and plasma. Phase transitions have been provably demonstrated in combinatorial
optimization, as illustrated by the easy-hard transition of random 3-SAT instances near the 4.2

clause-to-variable ratio (confirmed empirically by the runtimes of several types of SAT solvers).
Being a statistical phenomenon, phase transitions can be expected only in systems consisting of a
sufficiently large number of components. This has prevented, so far, the demonstration of phase

transitions in computing hardware though there have been properly identified phase transitions
in MPSoC / NoC research [Ogras and Marculescu 2005; Bogdan and Marculescu 2009]. However,

our work shows that future computing systems of sufficient size should exhibit phase transitions.

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.

114 · Raj Rao Nadakuditi et al.

2. END-TO-END LATENCY ANALYSIS

In this section we outline the problem formulation addressed in our work, define
necessary terminology and review prior work.

2.1 The model

Given a stream with m simultaneously active stages shown in Figure 1, we evaluate
its performance on a batch of n independent jobs. Each job starts at the first stage
and advances sequentially through the remaining stages — once job j has been
processed by stage i, it is queued up for stage i + 1 and processed once job j − 1
clears that stage (Section 3 formalizes these conditions). Inter-stage FIFOs are
assumed to always be sufficiently large, and all executions occur in-order. Our key
performance metric is end-to-end latency (EEL) l(m,n) — the completion time of
the last (n-th) job at the last (m-th) stage. Figure 1 illustrates a three-stage stream
and the emergence of idle periods on some stages between jobs. Unlike in [Davare
et al.], (i) no end-to-end latency deadlines are imposed and, (ii) our FIFO inter-
stage queuing model does not provision for explicit communication, simplifying the
computation of the end-to-end latency. This assumption ensures that the stage
times are job independent and hence statistically independent. For
Stochastic stage completion times arise in several contexts, including (i) ex-
treme sensitivity of runtime to the complexity of input data, (ii) non-determinism
due to randomized algorithms, shared resources, interrupts, and cache misses, as
well as (iii) the lack of accurate information about (possibly deterministic) stage
completion times. For analytic purposes, these diverse circumstances are captured
by modeling stage completion times with random variables, which also makes EEL
a random variable.

The main objective in this work is to quantify the impact of the probability dis-

Fig. 1. A timing diagram of a stream processor. Idle periods are indicated with red crosses.

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.

On Bottlenecks in Stochastic Stream Processing · 115

tributions of individual stage times on the end-to-end latency statistic. We seek
to characterize the mean end-to-end latency (MEEL), the variance, and when-
ever possible provide a complete analytical description of EEL via its probability
distribution.
Closest related work by Rajsbaum and Sidi [1994] and, more recently, by Lipman
and Stout [2006], studied the impact of random processing times and transmission
delays on the average number of computational steps executed by a processor in the
network per unit time when attempting to synchronize over a distributed network.
Our work differs in two notable ways. First, instead of bounds, we directly describe
relevant probability distributions. Second, while we start off our exposition in
terms of exponential probability distributions, we later conclude that the specific
form of the probability distributions matters less than anticipated. In particular,
the new scaling phenomena we discover for the EEL statistic hold for a broad class
of stage-time probability distributions.
Performance bottlenecks are of particular interest in our work, for the same
reasons as they are in Amdahl’s law. However, in the context of stream process-
ing with balanced stages and stochastic stage times, the time distribution of a
bottleneck stage may exhibit a greater variance or longer tail. This observation
motivates designers to collect runtime statistics as in [Chrysos et al. 1998] so that
such bottleneck stages can be identified and their impact mitigated, e.g., by allocat-
ing additional compute resources.3 In practice, each stage may exhibit a different

3If stage times are independent, then processing the same data at the same stage on multiple

processors (and using the first available result) can reduce variance and shorten the tail of the

resulting time distribution.

Fig. 2. Monotonic paths (1, 1) → (m,n) used to model end-to-end latency from Figure 1 by

Formula 3 with k = m.

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.

116 · Raj Rao Nadakuditi et al.

runtime distribution, whereas hardware designers, compiler experts and software
developers have no simple way to locate bottlenecks. Even with existing profiling
tools, pinpointing the “features” of runtime distribution (large variance, long tail)
that affect end-to-end latency most remains difficult. Indeed, bottleneck identifica-
tion and mitigation in stochastic streams have so far been more art than science.
Design trade-offs to satisfy power constraints and resource limitations have been
performed by trial and error.

3. MATHEMATICAL BACKGROUND

This section first reviews latency computation of deterministic queues. For queues
with stochastic service times, we outline two types of techniques to compute latency
distributions and compare them.
Notation. We employ the following notation throughout this paper:

—Si: Stage i ∈ {1, . . . ,m} where stages labeled from ‘left to right’,

—Cj : Job j ∈ {1, . . . , n} where jobs are labeled from ‘right to left’, i.e., in the
order that jobs exit the system:

—l(i, j): Time at which job j exits stage Si,

—w(i, j): Service time for job j at stage i.

Fundamental EEL recursion. Recall that l(i, j − 1) is the time at which job
j − 1 exits stage i while l(i−1, j) is the time at which job j exits stage i−1. When
l(i, j − 1) ≤ l(i − 1, j), then job j can be served immediately by stage i as soon
as job j exits stage i − 1. In-order execution assumed (see Section 2) implies that
when l(i, j − 1) > l(i− 1, j) then job j has to wait in server i’s queue for job j − 1
to be processed and exit stage i’s queue. Hence we have the recursion:

l(i, j) = w(i, j) +

{
l(i− 1, j) when l(i, j − 1)≤l(i− 1, j),

l(i, j − 1) when l(i, j − 1) > l(i− 1, j).
(1)

or equivalently,

l(i, j) = max{l(i− 1, j), l(i, j − 1)}+ w(i, j) (2)

for all i, j ∈ Z. The constraints in (2) and (3) suggest an O(mj)-time dynamic
programming algorithm for computing l(m, j). The fundamental recursion derived
above can be recast as the directed last passage percolation (LPP) problem:

l(i, j) = max
π∈P (i,j)

(∑
(k,`)∈π

w(k, `)

)
, (3)

where P (i, j) is the set of ‘up/right paths’ ending at (i, j), i.e., π ∈ P (i, j) if
π = {(ks, `s)}0s=−∞ such that (k0, `0) = (i, j) and (ks, `s) − (ks−1, `s−1) is either
(1, 0) or (0, 1) for all s ≤ 0. Note that the right-hand-side of (3) satisfies the same
recurrence as l(i, j) in (2) since a path in P (i, j), as shown in Figure 2, consists
of either a path in P (i − 1, j) and (i, j), or a path in P (i, j − 1) and (i, j). These
monotonic paths capture all possible critical paths during stream’s execution. We
give closed-form expressions for l(k, n) for two cases in discussions after Formulas
11 and 21, and contrast them with results for the stochastic case.

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.

On Bottlenecks in Stochastic Stream Processing · 117

This recursion can be found in the seminal paper by Glynn and Whitt [1991]
wherein the authors attribute the formulation to Tembe and Wolff [1974].
Stochastic queuing theory Glynn and Whitt [1991] studied the statistics of
Formula 3 when m� n and vice versa. For stream processing, this assumption can
be justified in the traditional setting where the number of stream stages remains
limited, i.e., m = O(1), but the number of jobs is large. Under these assumptions
EEL is normally distributed via the law of large numbers [Glynn and Whitt 1991].
Consequently, the asymptotic scaling of the mean is straightforward, and the impact
of a small number of bottlenecks is what one would intuitively expect. We note that
the “interacting-particle system” interpretation [Srinivasan 1993] used by queuing
theory simplifies the analysis by neglecting the interaction between stages — this
is a reasonable assumption when m � n or n � m, but not when n and m are
both small or when both are large.

Numerous parallel cores can be useful in deep streams when the number of
streaming jobs is sufficiently high. To this end, the RAMP project at Berkeley is
developing a massive FPGA-based emulator to study large-scale behavior of many-
core systems, recently reaching the 1008-processor milestone [Burke et al. 2008].
However, current supercomputers integrate 300,000 cores, and “supercomputers
with 100 million cores are coming by 2018” [Thibodeau 2009]. This motivates our
focus on analytical estimates. When both n and m are large in the stream model of
Section 2, the interactions between stochastic stage-time distributions accumulate,
and the assumptions made in queuing theory are no longer valid (see discussion
after Formula 11). The Gaussian distribution predicted by queuing theory tran-
sitions into the type-2 Tracy-Widom distribution studied in the spectral theory of
random matrices [Johansson 2000; Johnstone 2001], and the asymptotic scaling of
variance changes as well. Figure 3 contrasts the two distributions.
The type-2 Tracy-Widom distribution (TW2) describes the largest eigenvalue
of random Hermitian matrices [El Karoui 2007] and arises in combinatorics. If
π is a random n-element permutation, then the length of the longest increasing
subsequence of π converges (with appropriate scaling and recentering) to the TW2

distribution as n → ∞ [Baik et al. 1999]. For exponentially-distributed stage
times, Formula 3 is related to the longest increasing subsequence problem.
Empirical evidence in [Deift 2007] suggests viewing the TW2 distribution as a
nonlinear variant of the law of large numbers for EEL. Thus, we use TW2 and
related mathematics to perform accurate analysis of stochastic streams.

4. PERTINENT RESULTS FROM RANDOM MATRIX THEORY

In general, it is not easy to find an explicit formula of cumulative distribution
function (c.d.f.) of l(i, j). However, during the last ten years or so, a development
in the last-passage percolation problem (LPP) established a computationally easy
formula of c.d.f. for a special choice of the waiting times which we heavily exploit
for the analytical results presented in this paper. 4 We first restate a textbook

4Recent work on statistical traffic analysis in NoCs and multicore platforms [Bogdan and Mar-

culescu 2009; 2011b] stresses the importance of going beyond exponential distributions studied
in queuing theory. We agree with this assessment and note that while our results were derived

assuming exponentials, they appear to carry over in a more general context.

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.

118 · Raj Rao Nadakuditi et al.

−5 0 5
0

0.1

0.2

0.3

0.4

0.5

P
D

F
Normal distr.

TW
2
 distr.

Fig. 3. The Tracy-Widom and normal distributions.

definition to establish basic notation.

Definition 4.1 Exponential distribution. Throughout this paper, for λ >
0, we denote by f(t;λ) the exponential distribution with the p.d.f.

f(t;λ) = (1/λ) exp(−t/λ), t ≥ 0. (4)

For this choice of normalization, the mean E[t] = λ and variance var(t) = λ2.

Definition 4.2 Solvable LPP model [Borodin and Péché 2008]. Consider
real-valued numbers ai, bj ∈ (−∞,∞] with ai + bj > 0 for all i, j ∈ Z. Let w(i, j)
be an exponentially distributed random variable, normalized as in Definition 4.1 so
that it has mean ai+ bj. Let the w(i, j)’s for i, j ∈ Z, be independent. Consider the
LPP problem:

l(m,n) = max
π∈P

(∑
(k,`)∈π

w(k, `)

)
(5)

where P is the set of all up/right paths starting from (0, 0) and ending at (m,n)
with w(i, j) being random numbers chosen as above.

The theorem stated next, explicitly connects the distribution of l(m,n) with
w(i, j)’s chosen as in Definition 4.2 with the largest eigenvalue λmax(·) of a specific
random matrix.

Proposition 4.1 [Borodin and Péché 2008]. Let X be an m×n matrix with
independent entries whose distributions are given by

Xij ∼ CN (0, ai + bj), (6)

where CN denotes the circularly symmetric, complex normal distribution. Then we
have that

λmax(XX∗)
D
= l(m,n), (7)

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.

On Bottlenecks in Stochastic Stream Processing · 119

where
D
= denotes equality in distribution.

For proof, see [Borodin and Péché 2008, Proposition 1].

5. ANALYSIS OF BALANCED STOCHASTIC STREAMS

The research strategy pursued in this work is to initiate analysis in terms of balanced
exponentially distributed stage times with mean λ and standard deviation λ.

The initial choice of exponential distributions is motivated by its special role as
a worst case distribution from an information-theoretic perspective, as described
next. Extensions of the key results to a broader class of probability distributions are
discussed in Section 7. In a practical setting, we might not know the entire stage-
time distribution, but we can usually estimate its mean. From the many probability
distributions with a given mean, we distinguish the unique distribution that maxi-
mizes the Shannon entropy5 because it offers the most random probabilistic model
subject to what is known. Among all probability distributions supported on t ≥ 0
with mean λ, the exponential distribution exhibits maximum entropy [Cover and
Thomas 2006, Chapter 11]. This worst-case information-theoretic argument was
previously used by Rajsbaum and Sidi [1994] to motivate the focus on exponential
distributions in a setting related to ours.

To leverage results from the random-matrix theory, we first form a complex-
valued m×n matrix X with identically independently distributed entries, and then
consider the maximal eigenvalue of XX∗.

Theorem 5.1. Let the m stages have service times that are exponentially dis-
tributed means λ1 = . . . , λm =: λ. Let X be a m × n random matrix with i.i.d.
entries distributed as Xij ∼ CN (0, λ). Then for every m and n we have that

l(m,n)
D
= λmax(XX∗). (8)

Proof. Recall that w(i, j) is the service time for job j at stage i. The assump-
tions imply that w(i, j) for all i, j are identically distributed. Setting ai = λ for all

5A single number that is commonly used to measure the amount of uncertainty contained in a

probability distribution [Cover and Thomas 2006].

Mean Variance
m n Experiment Theory Experiment Theory

5 5 13.1024 12.3685 9.4351 15.0981
10 10 30.9954 30.3849 18.6033 23.9668
20 20 68.3172 67.8858 33.0268 38.0449
40 40 145.0274 144.7371 55.1251 60.3926
80 80 300.9902 300.7699 90.0644 95.8673
160 160 615.9515 615.7717 148.8302 152.1799
320 320 1249.4124 1249.4742 236.0294 241.5705
480 480 1885.7545 1885.0567 311.7331 316.5469
640 640 2521.6221 2521.5399 374.6064 383.4693
1000 1000 3955.4348 3955.3710 506.5496 516.3498

Table I. Empirical mean and variance of end-to-end latency, computed over 1000 Monte-Carlo
trials, compared to theoretical predictions in Formulas 10 and 11, respectively.

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.

120 · Raj Rao Nadakuditi et al.

i = 1, . . .m and bj = 0 for j = . . . 1, n and applying Proposition 4.1 gives us the
desired result. Johansson [2000] has an alternate derivation of this result.

5.1 The cost of stochasticity

Theorem 5.2. As m,n −→∞, we have that

l(m,n)− µm,n
σm,n

D−→ TW2, (9)

where

µm,n = λ(
√
n+
√
m)2 and σm,n = λ

(
√
m+

√
n)4/3

(mn)1/6
,

and
D−→ denotes convergence in distribution.

Proof. Johnstone studied the distribution of the largest eigenvalue of the matrix
XX∗ where X is a complex-valued matrix m × n matrix with i.i.d. normally
distributed entries with mean zero and unit variance in [Johnstone 2001]. The
results follow by invoking the correspondence, established in Theorem 5.1, between
the distribution of λmax(XX∗) (given by Theorem 1.3 of [Johnstone 2001]) and
l(m,n).

Since the TW2 distribution asymptotically describes λmax [Johnstone 2001], we
are able to highlight the important qualitative trends of l(m,n).

Corollary 5.1.

E [l(m,n)] = λ(
√
n+
√
m)2 − 1.7711λ

(
√
m+

√
n)4/3

(mn)1/6
+ o((mn)1/6) (10)

Var [l(m,n)] = 0.8132λ2
(

(
√
m+

√
n)4/3

(mn)1/6

)2

+ o((mn)1/6) (11)

Proof. Theorem 5.2 implies that

l(m,n) = µm,n + σm,n TW2 + o((mn)1/6).

The TW2 distribution (see Figure 3) has mean −1.7711 and variance 0.8132 [John-
stone 2001](see [Bornemann 2010] for machine-precision level accurate expressions
for the mean and variance). The stated result follows by making the appropriate
substitutions.

Figure 4 illustrates scaling behavior predicted by Formula 10. In contrast,
note that n identical jobs streamed through m stages with identical determinis-
tic latencies λ take λ(m + n) time. But MEEL in the stochastic case scales6 as
λ(
√
m+

√
n)2 = λ(m+ n+ 2

√
nm).

Hence, the cost of stochasticity scales as 2λ
√
mn.

6The second term on the right hand side of Formula 10 is O((mn)1/6) and hence can be ignored

relative to the O((mn)1/2) terms that emerge in the expansion of the first term in Formula 10.

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.

On Bottlenecks in Stochastic Stream Processing · 121

20 25 30 35 40 45 50 55 60
0

50

100

150

200

250

300

350

400

m = # stages

E
nd

−
to

−
en

d
la

te
nc

y

Stoch.: n = 25
Determ.: n = 25
Stoch.: n = 100
Determ.: n = 100

Fig. 4. Theoretical scaling of mean end-to-end latency with the number of stages for exponentially

distributed stage times. Solid lines illustrate Formula 10, and error bars give standard deviation
according to Equation 11. For comparison, dashed lines show latencies in a deterministic stream.

Observe that for n� m or m� n, the term 2λ
√
mn is asymptotically negligible

because 2
√
mn = o(mn), but it may contribute up to 50% of EEL when m = Θ(n).

This first-order result is alluded to in the seminal paper on queuing theory by Glynn
and Whitt [1991]. However, the law of vanishing returns stated next is new and
exploits results from random-matrix theory [Baik et al. 2005].

5.2 A law of vanishing returns for bottleneck optimization

Theorem 5.3. For integer k > 0, let the service time of the first k stages be
exponentially distributed with means λ1, . . . , λk and the service time of the remain-
ing m− k stages also be exponentially distributed with means λk+1 = . . . , λm =: λ.
Let λi > λ for all i = 1, . . . , k so that we have k bottleneck (or slow) stages in the
pipeline. Then

l(m,n)
D
= λmax(Λ1/2XX∗Λ1/2) (12)

where Λ = diag(λ1, . . . , λk, λ, . . . , λ) is an m×m diagonal matrix and X is an m×n
complex-valued matrix with i.i.d. normal entries with zero mean and unit variance.

Proof. As before w(i, j) is the service time for job j at stage i. The assumptions
imply that w(i, j) for the non-bottleneck stages i = k+1, . . . ,m and jobs j = 1, . . . n
are identically distributed with exponential distribution having mean λ. Consider
a bottleneck stage i = 1, . . . , k; it has i.i.d. service time w(i, j) for each job that is
exponentially distributed with mean λi for all j. Setting ai = λi for i = 1, . . . , k and
ai = λ for all i = k + 1, . . .m, and bj = 0 for j = . . . 1, n and applying Proposition

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.

122 · Raj Rao Nadakuditi et al.

4.1 gives us the equivalence:

l(m,n)
D
= λmax(Y Y ∗).

Here Y is an m× n complex-valued matrix with Yij having a variance ai = λi for
i = 1, . . . , k and ai = λ for i = k + 1, . . . ,m. Let Λ = diag(λ1, . . . , λk, λ, . . . , λ)
be an m×m diagonal matrix. Then, simple matrix calculus and the properties of

Gaussian random variables shows that Y
D
= Λ1/2X where X is an m× n complex-

valued matrix with i.i.d. zero mean, unit variance normally distributed entries.

The Y Y ∗
D
= Λ1/2XX∗Λ1/2 and the result follows.

Remark 5.1. Note that in the hypothesis of Theorem 5.3 we set the first k stages
to represent the bottleneck stages for the sake of expositional brevity. Any k of the
m stages could be bottleneck stages and the results would still apply.

Theorem 5.4. Define 1/c = λ(1 +
√
m/n).

a) When max(λ1, . . . , λk) < 1/c we have that as m,n −→∞,

l(m,n)− µm,n
σm,n

D−→ TW2, (13)

where

µm,n = λ(
√
n+
√
m)2 and σm,n = λ

(
√
m+

√
n)4/3

(mn)1/6
,

as in Theorem 5.2.
b) When λmax := max(λ1, . . . , λk) > 1/c (and assuming that there is only one

index i for which λi = λmax), we have that as m,n −→∞,

l(m,n)− µm,n
σm,n

D−→ N (0, 1), (14)

where

µm,n = λmax

(
n+

m

λmax − λ

)
and σ2

m,n = λ2max

(
n− m

(λmax − λ)2

)
.

Proof. This result was established in [Baik et al. 2005]. For an alternate,
matrix-theoretic derivation that directly exploits the connection between the largest
eigenvalue of a random matrix and l(m,n) established in Theorem 5.3 see [Nadaku-
diti and Silverstein 2010; Nadakuditi and Benaych-Georges 2010].

Corollary 5.2. a) When λmax := max(λ1, . . . , λm) < 1/c, we have that

E [l(m,n)] = µm,n − 1.7711σm,n + o((mn)1/6) (15)

Var [l(m,n)] = 0.8132σ2
m,n + o((mn)1/6). (16)

Here µm,n and σm,n are given by Theorem 6.2-a).

b) When λmax := max(λ1, . . . , λm) > 1/c, we have that

E [l(m,n)] = µm,n + o((mn)1/4) (17)

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.

On Bottlenecks in Stochastic Stream Processing · 123

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

2

4

6

8

10

12

14

λ

E
nd

−
to

−
en

d
la

te
nc

y
pe

r
st

ag
e

Stoch.: m=n
Determ.: m=n
Stoch.: m=n/2
Determ: m=n/2

Determ. phase transition

Stoch. phase transition
@ λ = 1.707

Stoch. phase transition
@ λ = 2

Fig. 5. The effect of a single bottleneck stage with λ := λmax > 0 when the other stages have

λ2 = . . . , λm = 1. End-to-end latency (normalized per stage) given by Corollary 5.2 exhibits a

phase transition at the critical value τ = 1 +
√

m
n

. Error bars show standard deviation as per

Formula 11. Dashed lines give a deterministic baseline as in Figure 4.

Var [l(m,n)] = σ2
m,n + o((mn)1/4). (18)

Here µm,n and σm,n are given by Theorem 6.2-b).

Proof. The result in part a) follows by employing the argument used in the
proof of Corollary 5.1. The result in part b) follows from the same argument
applied to the normal distribution with mean zero and variance one.

Figure 5 plots the normalized mean and variance per stage to illustrate the emer-
gent scaling behavior for the setting where λ2 = . . . = λm = 1: when the mean of
the bottleneck-stage time is below the critical threshold τ = 1/c = (1 +

√
m/n),

then, surprisingly, the end-to-end latency of the system becomes insensitive to
changes in λ1. The same holds for o(n) bottlenecks. This result can be inter-
preted as an analog of Amdahl’s law, for stream processing with stochastic runtime
distributions.
Numerical validation of the formulas presented so far was performed by ex-
tensive Monte-Carlo simulations in MATLAB. Table I shows excellent agreement
between analytical results and numerical simulations. Figure 6 graphically illus-
trates empirical accuracy of our bottleneck predictions. Notice that the errors
decrease as parameters grow — this is expected for asymptotic estimates. The
variances in Table I appear to be over-estimated in our empirical results, betraying
(distribution-dependent) higher-order terms missing from our estimates.

The phase transition can be intuitively interpreted as described next. Consider
the setting where there are m−1 stages having the same mean service time so that
λ1, . . . , λm−1 = 1 followed by a single bottleneck server with mean service time

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.

124 · Raj Rao Nadakuditi et al.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1

2

3

4

5

6

λ

M
ea

n
en

d−
to

−
en

d
la

te
nc

y
pe

r
st

ag
e

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

5

10

15

20

25

30

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

10

20

30

V
ar

ia
nc

e
of

 e
nd

−
to

−
en

d
la

te
nc

y
pe

r
st

ag
e

Theor. mean

Expt.: n = m = 80

Expt.: n = m = 320

Theor. variance

Expt.: n = m = 80

Expt.: n = m = 320

Predicted
stoch.
phase
transition @
λ = 2

Fig. 6. Empirical evaluation of analytical predictions (solid lines) when λ2 = . . . = λm = 1 in

Corollary 5.2 for the mean (left axis) and the variance (right axis) against λ := λmax > 0 of a
single bottleneck stage. Datapoints are averaged over 1000 Monte-Carlo trials.

λm ≥ 1. Let us examine the quantity l(m,n) by conditioning on the number of
jobs xm, where x ∈ [0, 1], waiting to be serviced when job n enters to queue for
stage m. Then we have that (to leading order)

E[l(m,n)|x] ≈ xnλm + (
√

(1− x)n+
√
m)2,

where the first term is nx times the average service time of the bottleneck stage
while the second term, by Corollary 5.1, is the amount of time it would have taken
for the n − nx jobs to be processed by all m stages. Let f(x) = E[l(m,n)]/n so
that for x ∈ [0, 1], we have

f(x;λm) =
xnλm + (

√
(1− x)n+

√
m)2

n
= λmx+ (

√
1− x+

√
m

n
)2. (19)

Equation (19) captures the dependence of the EEL of job n as a function of the
proportion of jobs that are ‘held up’ by the bottleneck stage. By this viewpoint,
the quantity

max
x∈[0,1]

f(x),

captures the maximum latency incurred due to all possible proportions of jobs held

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.

On Bottlenecks in Stochastic Stream Processing · 125

up by the bottleneck server. A simple calculation shows that

max
x∈[0,1]

f(x) =

f(0) =

(
1 +

√
m

n

)2

if λm < 1 +

√
m

n

λm

(
1 +

m/n

λm − 1

)
otherwise.

(20)

This yields the location of the phase transition, denoted by 1/c, in Corollary 5.2.
Note that whether the first stage or the last stage (or an in-between stage) is the
bottleneck does not change the answer - we set the bottleneck stage to be the last
stage for expositional simplicity. It is only when λm > 1 +

√
m/n = 1/c, that

the EEL is dominated by the bottleneck server, in which case, by the law of large
numbers the EEL becomes normally distributed.

6. ANALYSIS OF UNBALANCED STOCHASTIC STREAMS

We now generalize the previous setting by assuming that the m stage times are
independent and exponentially distributed with different parameters λ1, . . . , λm.
In Section 7, we discuss how these results provide insight for the setting where the
streams have balanced means but unbalanced variances.

Theorem 6.1. For integer k > 0, let the m stages have service times that are
exponentially distributed with means λ1, . . . , λm. Then

l(m,n)
D
= λmax(Λ1/2XX∗Λ1/2),

where Λ = diag(λ1, . . . , λm) is an m × m diagonal matrix and X is an m × n
complex-valued matrix with i.i.d. normal entries with zero mean and unit variance.

Proof. We employ the same approach as in the proof of Theorem 5.3. Setting
k = m gives us the stated result.

Theorem 6.2. Let c be the unique solution in [0, 1/max(λ1, . . . , λm)] of the
equation:

m∑
i=1

(
λic

1− λic

)2

= n. (21)

a) When max(λ1, . . . , λm) < 1/c we have that as m,n −→∞,

l(m,n)− µm,n
σm,n

D−→ TW2, (22)

where

µm,n =
1

c

(
n+

m∑
i=1

λic

1− λic

)
(23)

and

σ3
m,n =

n

c3

(
1 +

1

n

m∑
i=1

(
λic

1− λic

)3
)
. (24)

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.

126 · Raj Rao Nadakuditi et al.

b) When λmax := max(λ1, . . . , λm) > 1/c (and assuming that there is only one
index i for which λi = λmax), we have that as m,n −→∞

l(m,n)− µm,n
σm,n

D−→ N (0, 1), (25)

where

µm,n = λmax

(
n+

m∑
i=1

λi
λi − λmax

)
(26)

and

σ2
m,n = λ2max

(
n−

m∑
i=1

(
λi

λi − λmax

)2
)
. (27)

Proof. El Karoui [2007] studied the distribution of the largest eigenvalue of
the matrix Λ1/2XX∗Λ1/2 where X is a complex-valued matrix m× n matrix with
i.i.d. normally distributed entries with mean zero and unit variance and Λ is an
arbitrary diagonal matrix. The results follow by invoking the correspondence, es-
tablished in Theorem 6.1, between the distribution of λmax(Λ1/2XX∗Λ1/2) and
l(m,n). Specifically, part a) appears in Theorem 1 of [El Karoui 2007] and part b)
in [Baik et al. 2005; El Karoui 2007]. The location of the phase transition is also
derived in [Nadakuditi and Silverstein 2010].

Theorem 6.2 reveals the existence of a phase transition in the EEL distribution
depending on how distinct the mean service times at stage are. If they are closely
clustered and below the critical threshold c, then the TW2 arises; otherwise we get
the normal distribution. Consequently, the MEEL experience a phase transition
for the mean and variance of the EEL as well, exactly as stated in Corollary 5.2
with c now given by the solution of Equation 21. Note that, accordingly, we sub-
stitute µm,n and σm,n given by Theorem 6.2-a) and b) for the mean and variance
computation in Corollary 5.2.

As before, we can interpret the phase transition location as the λ value at which

max
x∈[0,1]

f(x) := λmx+ l(m,n− nx)

The value for λm at which λmx = l(m,n−nx) corresponds precisely to the critical
value denoted by 1/c in Theorem 6.2 note that the symmetries in the problem
imply that whether the first stage or the last stage (or an in-between stage) is the
bottleneck does not change the answer. It is only when λm > 1/c, that the EEL is
dominated by the bottleneck stage, whence, by the law of large numbers, the EEL
becomes normally distributed.

Note that n identical jobs streamed through m stages with deterministic latencies
λ1 ≥ λ2 ≥ . . . ≥ λm take

∑m
i=1 λi + nλ1 time. But in the stochastic case, MEEL

scales with µn,m as given by Formula 23, and the cost of stochasticity scales as

1

c

(
n+

m∑
i=1

λic

1− λic

)
−

(
m∑
i=1

λi + nλ1

)
> 0 (28)

where c is the solution of Equation 21.

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.

On Bottlenecks in Stochastic Stream Processing · 127

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
2.5

3

3.5

4

M
ea

n
en

d−
to

−
en

d
la

te
nc

y
pe

r
st

ag
e

λ

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

V
ar

ia
nc

e
of

 e
nd

−
to

−
en

d
la

te
nc

y
pe

r
st

ag
e

Expt. mean: n = m = 320

Expt. var.: n = m = 320

Determ.phase
transition

Predicted stoch.
phase transition

Fig. 7. The law of vanishing returns for an unbalanced stochastic stream with normally-distributed

stage-times with a single bottleneck stage having mean stage time λ. Empirical datapoints are

overlaid against theoretical predictions (lines) for the mean (left axis) and the variance (right axis)
of end-to-end latency.

The realization that the costs of stochasticity can be significant leads us to opti-
mization. Since such optimizations typically focus on bottleneck stages, it is useful
to characterize those stages. Suppose that m− 1 stage-times are independent and
exponentially distributed with parameters λ1, . . . , λm−1, while the bottleneck stage
time is exponentially distributed with parameter λ > max{λi}. Then we get a
statistically significant deviation in behavior only when λ > 1/c =: τ where τ rep-
resents the critical threshold and c is the solution of Equation 21. For λ < τ there
will be no statistically significant benefit to bottleneck optimization.

7. EXTENSION TO A BROADER CLASS OF DISTRIBUTIONS

So far, our results assume exponential stage-time distributions. We now offer several
types of evidence that these results hold for a broader class of distributions.
Theoretical considerations. Similar generalizations have been extensively stud-
ied in random-matrix theory and are exemplified by the well-known universality
conjecture [Deift 2007]. This conjecture considers matrix Sn,m in Proposition 4.1
and replaces the Gaussian distribution by an arbitrary distribution fw with the
same mean and variance. The claim is that the largest eigenvalue will be described
by the same TW2 distribution, as long as the fourth moment of fw is bounded.
This conjecture is supported by numerical data [Deift 2007], is commonly viewed
as a nonlinear law of large numbers for max-eigenvalues, and mirrors what has been
recently proven for min-eigenvalues by Tao and Vu [2010]. We state an analogous
nonlinear law of large numbers for MEEL.

Conjecture 7.1. Consider two n-stage stochastic streams where stage-time dis-

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.

128 · Raj Rao Nadakuditi et al.

1 2 3 4 5
3.5

4

4.5

5

5.5

6

6.5

λ

M
ea

n
en

d−
to

−
en

d
la

te
nc

y
pe

r
st

ag
e

Lognormal expt.: m = 80
Lognormal expt.: m = 320
Exponential theory

Predicted stoch.
phase transition @ λ = 2

Fig. 8. Theoretical predictions for MEEL with exponentially distributed stages and a single

bottleneck having a mean stage time of λ compared to simulation results averaged over 1000
independent trials for log-normally distributed stages, where the remaining stages have mean

stage time of one unit. Equally good fits were produced up to n = 1000 (not shown).

tributions are in stochastic order.7 The first stream exhibits arbitrary stage distribu-
tions with means µi, variances σ2

i and bounded fourth moments. The second stream
exhibits exponential stage-time distributions with parameters λi = σi and additional
linear shifts to adjust their means to match µi. Then the two streams exhibit the
same cost of stochasticity and the same threshold τ below which improvements to
MEEL latency vanish.8

Empirical evidence for normal distributions. Assume m−1 stages with mean
µ = 1 and variance i/(n − 1) at the i-th stage. Let the bottleneck occur at the
m-th stage, normally distributed with mean µ = 1 and variance λ2. The cost of
stochasticity can be computed using Formula 28 with λi = i/(n − 1) and predicts
experimental results with 5% accuracy. The phase-transition threshold τ := 1/c
where c is predicted by Equation 21 matches empirical results, as seen in Figure 7.
Empirical evidence for log-normal distributions with p.d.f.

f(t;µ, σ) =
1

tσ
√

2π
exp

(
− (log t− µ)2

2σ2

)
, t > 0. (29)

We set µ = log(λ/
√

2), σ =
√

log 2 to match the mean and variance of the expo-
nential distribution with parameter λ. Our earlier predictions are validated in this
case by simulation data shown in Figure 8.

7For real random variables A and B, A ≤ B when Pr[A > x] ≤ Pr[B > x] ∀x.
8Asymptotic equality neglects distribution-dependent higher-order terms.

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.

On Bottlenecks in Stochastic Stream Processing · 129

8. COMPARING COSTS TO BENEFITS OF STOCHASTICITY

Recall that conclusions can be drawn from Amdahl’s law that are relevant to both
hardware design and software optimization. In a similar spirit, we now consider
software streams with stage-times that are randomized even for identical input data.
In commercial EDA tool-chains, examples include (i) random restarts in leading
DPLL-style SAT-solvers, (ii) the Fiduccia-Mattheyses heuristic for netlist partition-
ing used with randomized initial partitions, and (iii) the framework of simulated
annealing, used in circuit placement and chip floorplanning, where move selection
during local search is randomized. Numerical EDA algorithms often exhibit very
different convergence in different configurations, and trying multiple settings on
identical inputs in parallel was shown useful [Dong and Li 2009].

Using additional computational cores can reduce the means of the stochastic
stage-times without reworking the algorithms. This is achieved by running multiple
independent jobs on identical inputs. Due to stochasticity, some jobs will finish
earlier, at which point the other equivalent jobs can be terminated.

Lemma 8.1. Let y1, . . . , ys be independent exponentially distributed random vari-
ables with mean parameters λ1, . . . , λs, respectively as in Definition 4.1. Then

min(y1, . . . , ys),

is also exponentially distributed with parameter 1/(1/λ1 + ...+ 1/λs).

Proof. See for example [Ross 2004].

Corollary 8.1. Let y1, . . . , ys be s i.i.d. exponentially distributed random vari-
ables with mean λ. Then min(y1, . . . , ys) is exponentially distributed with mean λ/s.

We can apply this corollary to realize a benefit of stochasticity in the following
manner. In the setting of Section 6, consider a single exponentially distributed
bottleneck stage with mean λm. By the law of vanishing returns, only dλm/τe <
dλm/max(λ1, . . . , λm−1)e identical cores achieve the maximum possible gain, and
no additional independent starts can improve MEEL, despite improving the bottle-
neck.9 In Figure 9, this technique is greedily applied to two bottlenecks (λ1 = 15,
λ2 = 30). A more effective balanced allocation splits s available processors among
k bottlenecks as Σki si = s so as to minimize Σki (λi/si).

The benefits of stochasticity in software streams can be contrasted with its costs.
For example, in Figure 5 at λ = 5 the costs (gaps between solid and dashed lines)
are small, but the benefits can produce a net 2× reduction in MEEL.

9. CONCLUSIONS

Our work establishes a far-reaching connection between (i) the performance evalua-
tion of stream processing and (ii) the spectral theory of random matrices [Johansson
2000; Johnstone 2001; Edelman and Rao 2005; Deift 2007; Tao and Vu 2010]. The
analytical models we derived for the costs of stochasticity in stream processing are
confirmed by numerical simulations with high accuracy and exhibit previously un-
known scaling trends, such as a a law of vanishing returns. To the best of our

9Our analysis neglects higher-order terms. Empirically, a very small improvement may be ob-

served, as in Figures 6 and 8.

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.

130 · Raj Rao Nadakuditi et al.

knowledge, relevant results from queuing theory Glynn and Whitt [1991] only cover
the case of balanced streams, and only to the first order. In contrast, our analytical
predictions agree with empirical data for both balanced and unbalanced stochastic
streams with several types of stage-time distributions, where only the mean and
the variance seem to affect key parameters of interest. In the random-matrix set-
ting [Nadakuditi and Silverstein 2010], it has been theoretically established that
correlations only affect (negligible) higher-order terms.

We have outlined an optimization approach for allocating parallel cores to speed-
up bottlenecks in stochastic software streams. In this context, we illustrate how the
benefits of stochastic runtimes may outweigh their adverse impact on end-to-end
latency of stream processors. Our analysis is analogous to Amdahl’s law in that
we quantify the sensitivity of the overall performance to one bottleneck task. Like
in Amdahl’s law, all tasks are sequentially ordered. The key difference, however, is
that our tasks work on streaming data, which allows a greater degree of parallelism
despite sequential constraints. As a result, the overall performance can be a lot
less sensitive to the greatest bottleneck. The trend itself may have been expected,
but we demonstrate that the dependence undergoes a phase transition, which can
hardly be anticipated by conventional intuition.

Our work focused on analytical estimates and algorithmically-simple techniques
for bottleneck detection. This, in particular, limited our applications to the simple
linear task dependency graph. However, our technique can undoubtedly be ex-
tended to a broader range of topologies. When the number of directed path in a
given topology is relatively small, our technique can be applied to each path. In
cases with significant path reconvergence (a common reason for exponential explo-
sion in path counts), groups of tasks can be merged into larger tasks, reducing path
counts. Such extensions are the subject of our ongoing work.

Application domains for our results are diverse and include power-aware pipeline
scheduling [Ghasemazar and Pedram 2011], energy-proportional computing [Cameron
2010; Ryckbosch et al. 2011], stochastic analysis and optimization of NoCs [Bog-
dan and Marculescu 2009; 2011b; 2010], simulation and optimization of many-core
CPUs [Burke et al. 2008], scheduling scientific workflows on supercomputers [Thi-
bodeau 2009; Tan 2010], and various applications of stochastic task graphs outlined
in the book [Manolache et al. 2007b] to list a few [Kerbyson et al. 2011].

Acknowledgements

R.R.N thanks Jinho Baik for many insights and stimulating discussions. This work
was partially supported by NSF CCF-1116115.

REFERENCES

Agrawal, K., He, Y., and Leiserson, C. 2006. An empirical evaluation of work stealing with

parallelism feedback. In ICDCS. Citeseer.

Amdahl, G. 1967. Validity of the single processor approach to achieving large scale computing
capabilities. In Proc. April 18-20, 1967, Spring Joint Computer Conf. ACM, 483–485.

Asanovic, K., Bodik, R., Demmel, J., Keaveny, T., Keutzer, K., Kubiatowicz, J., Morgan,
N., Patterson, D., Sen, K., Wawrzynek, J., et al. 2009. A view of the parallel computing
landscape. Communications of the ACM 52, 10, 56–67.

Baik, J., Ben Arous, G., and Péché, S. 2005. Phase transition of the largest eigenvalue for
nonnull complex sample covariance matrices. Annals of Probability, 1643–1697.

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.

On Bottlenecks in Stochastic Stream Processing · 131

0 5 10 15 20 25 30
0

5

10

15

20

25

30

35

Additional processors available for use

M
ea

n
en

d−
to

−
en

d
la

te
nc

y
pe

r
st

ag
e

Greedy Allocation
Balanced Allocation

No additional returns

Predicted S
max

 = 21

Processor allocation
to both botlenecks

Processor allocation
to both botlenecks

Processor allocation
to 1st bottleneck only

Fig. 9. Two strategies for processor allocation in a two-stage stochastic stream with λ1 = 15 and

λ2 = 30.

Baik, J., Deift, P., and Johansson, K. 1999. On the distribution of the length of the longest

increasing subsequence of random permutations. Journal of the American Mathematical Soci-
ety 12, 4, 1119–1178.

Bogdan, P. and Marculescu, R. 2009. Statistical physics approaches for network-on-chip traffic

characterization. In Proc. IEEE/ACM Int’l Conf. Hardware/Software Codesign and System
Synthesis (CODES+ISSS). ACM, 461–470.

Bogdan, P. and Marculescu, R. 2010. Workload characterization and its impact on multicore

platform design. In Proc. IEEE/ACM/IFIP Int’l Conf. Hardware/Software Codesign and

System Synthesis (CODES+ISSS). ACM, 231–240.

Bogdan, P. and Marculescu, R. 2011a. Cyberphysical systems: workload modeling and design

optimization. Design & Test of Computers, IEEE 28, 4, 78–87.

Bogdan, P. and Marculescu, R. 2011b. Non-stationary traffic analysis and its implications on
multicore platform design. IEEE Trans. on Computer-Aided Design of Integrated Circuits and

Systems 30, 4, 508–519.

Bornemann, F. 2010. On the numerical evaluation of distributions in random matrix theory: A
review. Markov Processes Relat. Fields 16, 803–866.

Borodin, A. and Péché, S. 2008. Airy kernel with two sets of parameters in directed percolation

and random matrix theory. Journal of Statistical Physics 132, 2, 275–290.

Burke, D., Wawrzynek, J., Asanovic, K., Krasnov, A., Schultz, A., Gibeling, G., and
Droz, P. 2008. Ramp blue: Implementation of a manycore 1008 processor system. Reconfig.

Sys. Summer Inst.(RSSI).

Cameron, K. 2010. The Challenges of Energy-Proportional Computing. IEEE Computer 43, 5,
82–83.

Chrysos, G., Dean, J., Hicks, J., Waldspurger, C., and Weihl, W. 1998. Method for es-

timating statistics of properties of instructions processed by a processor pipeline. US Patent
5,809,450.

Cover, T. and Thomas, J. 2006. Elements of information theory. Wiley.

Davare, A., Zhu, Q., Di Natale, M., Pinello, C., Kanajan, S., and Sangiovanni-Vincentelli,

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.

132 · Raj Rao Nadakuditi et al.

A. Period optimization for hard real-time distributed automotive systems. In Proc. ACM/IEEE

Design Automation Conf. (DAC).

Deift, P. 2007. Universality for mathematical and physical systems. In Int’l Congress of Math-
ematicians. Vol. I. Eur. Math. Soc., Zürich, 125–152.

Dong, W. and Li, P. 2009. Parallelizable stable explicit numerical integration for efficient circuit

simulation. In Proc. ACM/IEEE Design Automation Conf. (DAC). IEEE, 382–385.

Edelman, A. and Rao, N. 2005. Random matrix theory. Acta Numerica 14, 233-297, 139.

El Karoui, N. 2007. Tracy-Widom limit for the largest eigenvalue of a large class of complex
sample covariance matrices. The Annals of Probability 35, 2, 663–714.

Ghasemazar, M. and Pedram, M. 2011. Optimizing the Power-Delay Product of a Linear

Pipeine by Opportunistic Time Borrowing. IEEE Trans. on CAD 30, 10, 1493–1506.

Glynn, P. and Whitt, W. 1991. Departures from many queues in series. The Annals of Applied
Probability 1, 4, 546–572.

Hill, M. and Marty, M. 2008. Amdahl’s law in the multicore era. Computer 41, 7, 33–38.

Johansson, K. 2000. Shape fluctuations and random matrices. Communications in Mathematical

Physics 209, 2, 437–476.

Johnstone, I. 2001. On the distribution of the largest eigenvalue in principal components analysis.
Annals of Statistics, 295–327.

Kerbyson, D. J., Vishnu, A., Barker, K. J., and Hoisie, A. 2011. Codesign challenges for

exascale systems: Performance, power, and reliability. IEEE Computer 44, 11, 37–43.

Lipman, J. and Stout, Q. 2006. A performance analysis of local synchronization. In Proc. ACM
Symp. on Parallelism in Algorithms and Architectures (SPAA). ACM, 260.

Manolache, S., Eles, P., and Peng, Z. 2007a. Fault and energy-aware communication mapping

with guaranteed latency. Int’l fJournal of Parallel Programming 35, 2, 125–156.

Manolache, S., Eles, P., and Peng, Z. 2007b. Real-time applications with stochastic task
execution times - analysis and optimisation. Springer, 1–152.

Nadakuditi, R. and Benaych-Georges, F. 2010. The breakdown point of signal subspace

estimation. In IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM).

IEEE, 177–180.

Nadakuditi, R. and Silverstein, J. 2010. Fundamental limit of sample generalized eigenvalue
based detection of signals in noise using relatively few signal-bearing and noise-only samples.

IEEE Journal of Selected Topics in Signal Processing 4, 3, 468–480.

Ogras, U. and Marculescu, R. 2005. Application-specific network-on-chip architecture cus-
tomization via long-range link insertion. In IEEE/ACM Int’l Conf. Computer-Aided Design

(ICCAD). IEEE, 246–253.

Rajsbaum, S. and Sidi, M. 1994. On the performance of synchronized programs in distributed

networks with random processing times and transmission delays. IEEE Trans. on Parallel and
Distributed Systems 5, 9, 939–950.

Ross, S. 2004. Introduction to probability and statistics for engineers and scientists. Acad. Press.

Ryckbosch, F., Polfliet, S., and Eeckhout, L. 2011. Trends in Server Energy Proportionality.

IEEE Computer 44, 9, 69–72.

Srinivasan, R. 1993. Queues in series via interacting particle systems. Mathematics of Operations
Research, 39–50.

Tan, W. 2010. Network Analysis of Scientific Workflows: A Gateway to Reuse. IEEE Com-
puter 43, 10, 54–61.

Tao, T. and Vu, V. 2010. Random matrices: Universality of local eigenvalue statistics up to the
edge. Communications in Mathematical Physics 298, 2, 549–572.

Tembe, S. and Wolff, R. 1974. The optimal order of service in tandem queues. Operations

Research, 824–832.

Thibodeau, P. 2009. Supercomputers with 100 million cores coming by 2018. Computer-
world 11, 16, 09.

Received December 2011; revised May 2012; accepted ?? ????

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.

