Constraint-Driven Floorplan Repair

MICHAEL D. MOFFITTT, JARROD A. RoY#, IGOR L. MARKOV#, MARTHA E. POLLACK?
TIBM Austin Research Lab
fUniversity of Michigan, Ann Arbor

In this work we propose a new and efficient approach to the floorplan repair problem, where vi-
olated design constraints are satisfied by applying small changes to an existing rough floorplan.
Such a floorplan can be produced by a human designer, a scalable placement algorithm, or result
from engineering adjustments to an existing floorplan. In such cases, overlapping modules must
be separated, and others may need to be repositioned to satisfy additional requirements. Our
algorithmic framework uses an expressive graph-based encoding of constraints which can reflect
fixed-outline, region, proximity and alignment constraints. By tracking the implications of exist-
ing constraints, we resolve violations by imposing gradual modifications to the floorplan, in an
attempt to preserve the characteristics of its initial design. Empirically, our approach is effective
at removing overlaps and repairing violations that may occur when design constraints are acquired
and imposed dynamically.

Categories and Subject Descriptors: B.7.2 [Integrated Circuits]: Design Aids—placement and
routing; J.6 [Computer-Aided Engineering]: Computer-Aided Design; G.4 [Mathematical
Software]: Algorithm Design and Analysis

General Terms: Design, Algorithms

Additional Key Words and Phrases: Floorplanning, Legalization, Constraints

1. INTRODUCTION

The significance and complexity of floorplanning is continually increasing with the
growth of systems-on-chip. With hundreds and thousands of modules in modern
floorplans, all-manual design is infeasible. However, existing algorithms fail to han-
dle important design constraints. Even the simplest non-overlapping constraint is
often violated by recent floorplanners. A similar challenge in standard-cell place-
ment has been successfully addressed by decoupling global placement from legaliza-
tion, where the former optimizes interconnect and is allowed to violate many design
constraints. While a great deal of work on legalization in placement has been pub-
lished [Brenner et al. 2004; Cong et al. “Robust ...” 2005; Ren et al. 2005], much
of it is inapplicable to classical floorplanning, where modules have different shapes
and are not placed within individual rows.

In this work we propose a new efficient approach to floorplan legalization. Our
tool — FLOORIST — performs legalization and repair of existing floorplans that may
have been produced by a variety of layout methodologies. In contrast to previous

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 2008 ACM 1084-4309/2008/0400-0001 $5.00

ACM Transactions on Design Automation of Electronic Systems, Vol. V, No. N, Month 2008, Pages 1-077.

2 . Michael D. Moffitt, Jarrod A. Roy, Igor L. Markov, and Martha E. Pollack

work, our algorithm takes a conflict-directed approach to repair, modifying only
those features of the layout that are directly responsible for violated constraints.
As a result, the solutions produced by FLOORIST preserve the qualities and char-
acteristics of the original layout. Unlike diffusion-based methods in [Ren et al.
2005], our technique can spread large movable macros, and does not require models
of a physical diffusion process. Furthermore, we exploit the expressive power of a
graph-based framework to enable the repair of a wide variety of violated constraints.

2. RELATED WORK: LEGALITY AND LEGALIZATION

Techniques for ensuring overlap-free placements can be classified as correct-by-
construction (in which legality is guaranteed a priori) and construct-by-correction
(in which legalization is postponed until post-processing).

Correct-by-Construction Approaches. mPG [Chang et al. 2003] enforces
legalization at every level of a cluster hierarchy in multi-scale optimization, using
simulated annealing on sequence-pairs, which is often expensive. Capo [Roy et al.
2006] legalizes subproblems of recursive bi-partitioning using simulated annealing
as well. If legalization succeeds, modules are placed after further refinement. If
legalization fails, subproblems are merged and legalization is attempted on the
larger problem. As a result, Capo can generate infeasible instances if whitespace is
tight. In the mixed-size placer from [Cong et al. “Robust ...” 2005], every partition
is guaranteed to be legalizable by a fast constructive algorithm.

Construct-by-Correction Approaches. FengShui [Khatkhate et al. 2004]
and APlace [Kahng et al. 2005] postpone legalization until a global floorplan has
been generated, making use of a simple Tetris-like algorithm by D. Hill (US Patent
6370673), which sorts cells and macros by their z-coordinates and places them one-
by-one into rows to greedily minimize displacement. Diffusion-based legalization in
[Ren et al. 2005] builds a discrete approximation of a continuous diffusion equation;
cells are presumed to fit into rows, and macros must be fixed.

In [Nag and Chaudhary 1999] a given layout is converted into a sequence-pair,
and is manipulated by perturbing the ordering of pairs of modules and relocating
individual modules. In XDP [Cong and Xie 2006] a constraint-graph is used, in
which overlaps are removed in a preprocessing step that increases the dimensions
of the layout beyond the fixed outline. However, XDP seeks to reduce HWPL,
rather than preserve the characteristics of the original design; as such, it has the
potential to degrade other qualities of the solution (such as timing), and is thus less
appropriate when considering Engineering Change Orders (ECOs). Furthermore,
both of these prior approaches perform adjustments to reduce the size of the result-
ing floorplan, rather than remove or repair constraint violations. Indeed, neither
of the techniques described in [Nag and Chaudhary 1999] and [Cong and Xie 2006]
handle the presence of fixed macros and obstacles, making their applicability to
complex industrial designs questionable. Our contributions are compared to prior
work in Table I.

3. THE FLOORIST ALGORITHM

FroorisT (“Floorplan Assistant”) begins with a global floorplan which may violate
constraints due to block resizing, or for any other reason. Then it applies a three-

Constraint-Driven Floorplan Repair . 3

Table I. Comparison of placement legalization tools.

Legalizes | Handles Handles Produces Supports
large fixed generic Scalable small module
macros | obstacles | constraints displacement | spreading
[Nag and Chaudhary 1999] + — — — — —
Brenner et al. 2004 — —+ — + + —
[Ighatkhate et al. 200]4] + - - + - -
[Kahng et al. 2005] + + — + — —
[Ren et al. 2005] — + — + — +
[Cong and Xie 2006] + — — + — —
Our work + + + + + +
1500 i w; X hl (EL ~,yi)
3 1| 550 x 350 (0, 600)
1 2 2 | 450 x 350 | (550, 600)
— 31 400 x 300 | (900, 650)
7 % 4 | 400 x 500 (0, 50)
4 5 6 5 | 450 x 400 | (300, 100)
6 | 550 x 400 | (750, 100)
71200 x 200 | (1300, 300)

Fig. 1. A small floorplan in need of repair.

stage procedure outlined below.

3.1 Translation to Constraint Graphs

The lower-left corner of any module M; (with dimensions w; x h;) is assigned a
coordinate (z;,y;) indicating its position. We refer to this mapping from modules
to fixed positions as an absolute assignment. However, since flaws in the floorplan
typically include overlaps, it is useful to instead consider a relative assignment of
pairwise relationships between blocks rather than absolute positions. For this, we
use a variant of constraint graphs [Moffitt and Pollack 2006]. A pair of graphs
(Gp and Gy) is constructed, where each graph contains a node ¢ for every module
M; and there exists a directed edge for every pair of modules M; and M;. The
direction of this edge, and the graph to which it belongs, depends on the pairwise
relationship between M; and M;. If M; is to be placed to the left of M}, equivalently
x;+w; < x5, this would require an edge from node ¢ to node j in Gz with weight w;.
We label this relationship L(7,j) — the other possible labels being R(i,), A(4, j),
B(i,7) (for right of, above, and below). This notation allows us to refer to the set
S of all pairwise relationships between modules. The following set contains some
of the relationships that could be used to describe the floorplan shown in Figure 1:

{L(1,2),A(1,4),R(3,4),L(5,7)} C S

Notice that modules 2 and 3 overlap in this layout, as do modules 4 and 5. The
relations introduced thus far are not sufficient for a pair of modules that overlap.
As such, we propose the addition of a fifth “empty” relation — E(4, j) — to indicate
the lack of any constraint between M; and M;. E(i,j) can be regarded as the
absence or relaxation of an edge in either constraint graph. Since previous graph-
based encodings do not permit the explicit relaxation of such constraints, we will
generally refer to these as a relaxed pair of constraint graphs.

4 . Michael D. Moffitt, Jarrod A. Roy, Igor L. Markov, and Martha E. Pollack

Create-Graphs((z1,y1, ..., 2N, yN), (w1, h1,...,wN,hN))
I. S—0©

2. For j=1to N

3. Fori=1toj

4 (Of the choices below, keep one w/ smallest slack)
5 If (z; +wy <xj) S— SU{L(i,45)}

6. If (xj +wj; <xz;) S — SU{R(,7)}
7. If (yi +hi <y;) S — SU{AG, 7))}
8
9
10.

If (yj +hj <yi) S— SU{B(,75)}
. (If no choices, S «— SU{E(i,j)})
return G (S), Gv (S)

Fig. 2. Translating the initial placement into constraint graphs.

[0, 300] [550, 1100] [0, 100] [1000, 1100]

[0, 250] [1300,1500]

Fig. 3. The horizontal constraint graph G corresponding to the floorplan in Figure 1 before
repair (left) and after repair (right).

Building relaxed constraint graphs is straightforward (see Figure 2). For every
pair of modules that are relatively displaced in a certain direction, the proper
relation is added to the set S. When multiple relationships exist, ties are broken
based on the horizontal and vertical distances between the modules. Consider
modules 1 and 7 in our small example. While edges corresponding to L(1,7) and
A(1,7) are both feasible choices, we prefer L(1, 7), since the horizontal displacement
between these modules is much greater than the vertical displacement. Any pair
of modules that overlap is given the F(i, j) relation. Once S has been constructed,
constraint graphs can be built in O(N?) time by adding the appropriate edges
and computing single-source longest paths. Feasible regions of each module can
be cheaply extracted from the graph-based encoding. Figure 3 (left) shows Gg
for Figure 1. Each node is labeled with upper and lower bounds on its possible
positions, e.g., the smallest horizontal coordinate for Block 2 is 550.

3.2 Conflict-Directed lIterative Repair

For a given set S of pairwise relationships, our objective is to resolve every empty
relation E(i,j) in S, as they correspond to violated constraints. The original solu-
tion should be preserved as much as possible. Our greedy, backtrack-free iterative
repair algorithm is described in Figure 4. Lines 2-6 attempt to replace E(i,j) re-
lationships whenever one of the other four relationships is freely available (e.g.,
sufficient slack exists in the graphs to add the appropriate edge). Consider the
E(2,3) relation in our example. Module 3 can be shifted toward the right wall
to remove its overlap with module 2. This information is obtained directly from
the constraint graphs. As a result, we can instead invoke the relation L(2,3) and

Constraint-Driven Floorplan Repair . 5

Iteratively-Repair(S)
1. While (3(E(z,7) € S))
2. // this first loop makes ‘trivial’ assignments

3. For each E(i,j) € S

4. For each possible pairwise relation P(%, j)

5. If (consistent(S U {P(i,j)} — {E(4,7)}))

6. S — SU{P(,j)} —{E(,j)} ; break

7. // this second loop swaps existing assignments

8. For each E(i,j) € S

9. For each possible pairwise relation P(%, j)
10. C « Critical-Path(M;) U Critical-Path (M)
11. For each P'(i',j') € C
12. For each P (i’,j’) such that P"" # P’
13. If (consistent(S U {P"(i',5')} — {P'(i',5)}))
14. S — Su{P"@{,j)}—{P'(,5)}
15. continue loop @ line 11 with next P’(i’, j)

Fig. 4. Our iterative repair procedure.

update Gy by adding the constraint x5 + wy < x3. The total number of overlaps
has now been reduced from two to one. Unfortunately, the relation E(4,5) cannot
be resolved directly — no other pairwise relationship between modules 4 and 5 can
be introduced without either violating another non-overlap constraint, or extending
the layout beyond the given fixed outline. In other words, the relations in the set
{L(4,5), R(4,5), A(4,5), B(4,5)} are in conflict with the current constraint graphs
and call for more drastic modifications.

Possible alternatives can be seen in Figure 1 — module 6 can be placed below
module 7, rather than to its left. This would amount to removing the relation L(6, 7)
and replacing it with B(6, 7) and the constraint y;+h7 < y¢ (adding the appropriate
edge in Gy). After performing this modification, the last remaining overlap can
be resolved by adding the relation L(4,5) and the constraint x4 + w4 < x5. Other
relations can be swapped in this example, but few help to resolve the violated
constraint. For instance, we could reverse the relationship between modules 1 and
2 by replacing L(1, 2) with R(1,2), but such a modification would have no effect on
the overlap between modules 4 and 5. This suggests conflict-directed legalization,
which is the key concept in our floorplan repair procedure, which computes critical
paths [Adya and Markov 2003], i.e., tightly packed sequences of blocks that constrain
each other in the same direction. The critical path for a particular module can be
obtained by traversing predecessor nodes within the appropriate constraint graph.
For instance, consider Block 7 in the horizontal constraint graph of Figure 3 (left).
One path of blocks that precedes it is the sequence 4 — 2 — 7, which would give a
lower bound of 1000. However, the sequence 5 — 6 — 7 is the true critical path,
as it provides a tighter lower bound of 1100. The critical path can be regarded as
an explanation for a module’s current location.

For each of the four primary relations of a violated non-overlap constraint, we
identify a set of culprits C' by examining edges along the critical paths for M; and
M; in the appropriate constraint graph (lines 8 — 10 in Figure 4). If any of these
edges can be safely replaced with an alternative pairwise relationship (lines 11 —
13), then we perform this replacement (line 14). The order in which these relations
are attempted is heuristically chosen based on the modules’ original locations. Each
swap can be achieved in O(N?) time using the longest-path algorithm (although

6 . Michael D. Moffitt, Jarrod A. Roy, Igor L. Markov, and Martha E. Pollack

Minimize-Displacement (G, Gv)

I. Fore=Tto N

2. G g .AddEdge(left_wall, z;, max(orig-x;, Gg.lb(x;)))

3. G .AddEdge(z;, right_wall, min(orig-z;, W — Gg.ub(x;)))
4. Gy .AddEdge(bottom_wall, y;, max(orig-y;, Gv .lb(y;)))

5. Gv.AddEdge(y;, top-wall, min(orig_y;, H — Gv.ub(y;)))

Fig. 5. Emulation: The creation of a fixed placement that resembles the original solution.

incremental techniques can be used to improve efficiency). In the event that some
previously violated constraints can now be satisfied, these will be caught during the
first phase of the next step in iterative repair. Otherwise, additional replacements
will be performed repeatedly to further manipulate the layout.

This process continues until all violated constraints have been resolved or some
alternative termination criterion has been reached (such as a maximal number of
iterations, or timeout limit). We note that since the algorithm is not exhaustive, it
is not guaranteed to find a feasible solution within any bounded amount of search
(for instance, the blocks given may be entirely unpackable, in which case no legalizer
would be able to find a feasible solution). However, our experimental results will
demonstrate that even with a conservative amount of whitespace, our algorithm is
extremely effective in removing all overlaps, and so additional termination criteria
were typically not needed. Since no history of prior configurations is maintained,
it is possible for the algorithm to encounter the same configuration multiple times.
However, as with traditional local search (e.g., simulated annealing), the frequency
of these repetitions will be largely mitigated by randomization.

Example 1: In Figure 3 (right) we show Gy after legalization is complete.
This is the result of three consecutive operations applied to the original graph from
Figure 3 (left): (a) an edge has been added from Block 2 to 3, (b) an edge has
been removed between Blocks 6 and 7, and (¢) an edge has been added from Block
4 to 5. New edges have been highlighted in bold. Some edges that are implied by
transitivity (e.g., the edge from Block 1 to Block 3) are omitted.

3.3 Translation to Fixed Locations

The final layout can be found from the graph-based encoding in several ways. Aside
from the obvious packing solutions that gravitate blocks toward a particular side
or corner, we develop two more elaborate means to minimize displacement and
maximize separation.

Minimizing Displacement from the original locations can be achieved by in-
crementally adding edges to the graph in order to lock modules into locations near
their initial positions. To emulate the initial placement, we propose pseudocode
in Figure 5. For each module, we use Gy to extract the lower and upper bounds
on its final horizontal position x;. From this, we can determine whether or not it
can be given its original horizontal coordinate. If it can, edges are added to ensure
this. Otherwise, the module is slid as close to its original position as possible and
edges are added as appropriate. A similar operation is performed to determine the
module’s vertical position. See illustration in Figure 7.

Example 2: The largest module in our example is Block 6, which has a feasible
window of 850 to 950 after legalization (see Figure 6, left). We could select any
value in this range and guarantee a consistent layout. Unfortunately, the original

Constraint-Driven Floorplan Repair . 7

[0, 100] [1000, 1100] [0.0] [1100, 1100]

[1000, 1300] (1500,1500]

Fig. 6. Finding final positions for all of the blocks by emulating the original placement (left) or
maximizing separation between blocks (right). To emulate the initial solution, a pair of edges has
been added to lock Block 6 into a horizontal coordinate near its original position (left). To achieve
separation, a constant is applied to the weight on each edge between a pair of modules (right).

1500 1500

000T

Fig. 7. Our floorplan after repair and either emulation (left) or separation (right).

horizontal position of Block 6, 750, is outside this range. Emulation would thus
choose 850 as the closest possible value, adding an edge from the left wall to Block 6
with a weight of 850. To constrain this block from the right, a second edge would be
added from Block 6 to the right wall with a weight of 650 (since 1500 — 850 = 650).
As can be seen in Figure 6, these edges serve to lock not only Block 6 into place
(horizontally), but also Blocks 4 and 5 as well.

Complexity: Each addition of an edge to the constraint graph requires worst
case O(N?) time. For N blocks, the entire emulation procedure takes O(N?) time,
but is invoked only once, and can be bypassed when preserving initial locations is
unimportant. As shown in Section 4, emulation can process thousands of modules
in under a second. It is clearly more scalable than sequence-pair based annealing
which requires at least N* steps in most common implementations.

Maximizing Separation. An alternative objective is the even spreading of
modules across the chip, with an eye on subsequent physical synthesis and rout-
ing that often require a more balanced allocation of space. Figure 8 outlines
our process of separation mazimization. The effect is similar to that achieved by
diffusion-based spreading [Ren et al. 2005] that is based on solving PDEs for chem-
ical diffusion. In contrast, our separation procedure operates upon the constraint-
graph representation, is discrete in nature and ensures legality.

Both separation and emulation add edges incrementally until blocks are locked
into fixed positions. However, rather than insert new edges between modules and
the walls, separation iteratively increases the weight of the arc between each non-

8 . Michael D. Moffitt, Jarrod A. Roy, Igor L. Markov, and Martha E. Pollack

Maximize-Separation(Gy, Gy, increment)

1. dist — 0, changed — false

2. while (changed)

3. dist «— dist + increment

4. For j =1to N

5. Fori=1toj

6. If (L(%,7)) changed «— Gg.AddEdge(z;, x;, min(w; + dist, Gg.ub(xz;)—Gg.lb(x;)))
7. If (R(i, 7)) changed — G .AddEdge(x;, x;, min(w; + dist, Gg.ub(xz;)—Gm.lb(xz;)))
8. If (A(4,7)) changed — Gv.AddEdge(yi, y;, min(h; + dist, Gy .ub(y;) — Gv .lb(y:)))
9. If (B(i, 7)) changed < Gv.AddEdge(y;, yi, min(h; 4 dist, Gv.ub(y;) — Gy .lb(y;)))

Fig. 8. Separation: The creation of a fixed placement that spreads modules across the chip.

overlapping pair by a small constant. This is repeated until no additional changes
in the graph are observed at which point each module will have no additional slack.
The additional weight added to each edge is bounded by slack, as to not violate the
fixed outline.

Example 3: In Figure 6, we show the horizontal constraint graph after an
additional weight of 50 has been applied to each edge. In this case the additional
constant term lock all blocks in place horizontally except for Block 7. Figure 7
(right) illustrates layout after the repair and separation procedures.

Complexity: The naive implementation suggested by Figure 8 would require
O(N%) time for each iteration on the value of the distance variable. The total
complexity can be reduced to O(N?) time if all individual edge weights are instead
updated in a single collective sweep, with one global pass to propagate these new
values along the longest paths contained within the graph.

4. EXPERIMENTAL RESULTS

We compare FLOORIST with legalizers from FengShui 5.1 [Khatkhate et al. 2004]
and APlace 2.01 [Kahng et al. 2005], which are based on the Tetris algorithm.*
Since the tools compared do not support soft blocks, all blocks are considered hard
with an aspect ratio of 1.0.

4.1 Repairing the Output of a Global Floorplanner

We ran FengShui 5.1’s legalizer and FLOORIST on final solutions produced by APlace
2.01.2 Table 2 of [Moffitt et al. 2006] (not reproduced due to space limits) shows
detailed results of these experiments. We find that FengShui 5.1 is extremely frag-
ile, as it crashes on the majority of instances. Furthermore, when it does generate
a solution, it often increases the amount of overlap and tends to violate the fixed
outline constraint by placing modules out of core. On all instances that we tried,
FengShui fails to produce legal solutions. In contrast, FLOORIST achieves legal-
ity and 0% overlap on all instances, preserving global interconnect length while
remaining competitive in runtime. The layouts produced by using FLOORIST on
these initial solutions are each superior in wirelength to the previous best legal

1A binary provided to us of the XDP legalizer [Cong and Xie 2006] used by mPL6 crashed on all
IBM-HB instances [Cong et al. “Fast ...” 2005] used in our experiments.

2We focus on the output of APlace since, as observed in [Moffitt et al. 2006], the latest version
of Capo generally does not produce illegal solutions, and FengShui is too unreliable to produce
consistent results on these benchmarks.

Constraint-Driven Floorplan Repair . 9

Table II. Performance of legalizers on placements with reshaped modules.

| % reshaped — [[10% [20% [30% | 40% [50% [60% [70% | 80% [90% |

| avg. % initial ovlp [1.38 [2.81 [3.98 | 559 [6.92 | 823 [9.73 [11.11 [12.31 |
% solved 10 0 0 0 0 0 0 0 0
avg. % ovlp 81.1 | N/A | N/A | N/A |N/A | N/A |N/A |N/A | N/A

avg. HPWL |3.11E6| N/A | N/A | N/A | N/A | N/A |N/A | N/A | N/A
avg. runtime (s) |[12.36 | N/A | N/A | N/A |N/A | N/A |N/A | N/A | N/A
% solved 80 35 25 0 0 0 0 0 0
avg. % ovlp || 0.343 |0.389 | 0.431 | N/A | N/A | N/A | N/A | N/A | N/A
avg. HPWL |[2.90E6 [2.96E6 [3.04E6 | N/A | N/A | N/A | N/A | N/A | N/A
avg. runtime (s) 40.5 | 54.3 | 75.8 | N/A | N/A | N/A | N/A | N/A | N/A
% solved 100 100 100 100 100 100 100 100 100
avg. % ovlp 0 0 0 0 0 0.040 |0.221 [0.226 |0.466
avg. HPWL 2.86E6 [2.88E6 [2.90E6 [2.91E6 2.93E6 [2.94E6 [2.94E6 [2.96E6 2.97E6
avg. runtime (s) 2.40 6.44 10.2 15.5 28.6 60.0 |180.3 |197.4 |227.0

Floorist| APlace |FengShui

solutions. The average reduction in wirelength observed is 7% [Moffitt et al. 2006].
Refer to Figure 9 for sample layouts generated in this experiment.

4.2 Repairing Floorplans with Resized Blocks

In a second set of experiments, we reshape a percentage of blocks in a legal place-
ment (APlace’s ibm01 solution legalized by FLoorisT) and change aspect ratios
from 1.0 to either 0.5 or 2.0. The percentage of blocks reshaped is varied between
10% and 90%, and 20 initial solutions are created for each such percentage. The
overlaps in the resulting set of benchmarks are much more significant than those in
the first experiment, both in number and size. In Table IT we report the percentage
of instances on which a given legalizer returned a solution, the average amount of
overlap in such solutions, average HPWL, and average runtime for solved instances.
FengShui’s legalizer returns solutions for only two benchmarks, which are far from
legal. APlace’s legalizer is somewhat more reliable, and produces at least one solu-
tion out of twenty for cases where the percentage of blocks resized is 30% or less.
However, the solutions are not completely legal. Furthermore, its runtime is over
a minute when 30% of the blocks are reshaped. FLOORIST produces entirely legal
solutions for all problems where the percentage of blocks reshaped is as high as
50%. It also returns nearly-legal solutions in extreme cases with as many as 90% of
blocks being reshaped, and produces HPWL that is superior to that of APlace. On
easy problems, its runtime is almost negligible, but increases monotonically with
the illegality present in the initial solutions as expected.

4.3 Handling Obstacles

FLooRIST also excels in handling layouts with fixed obstacles; such problems have
traditionally been difficult for annealers, in part because popular floorplan represen-
tations do not easily permit the encoding of such constraints. The representation
used by FLoORIST handles obstacles almost effortlessly - one needs only to add the
appropriate edges between the fixed block and the surrounding walls, and preclude
these edges from being removed during repair. This simple modification allows
FLOORIST to reason about fixed obstacles.

To produce results in Table III, we take the solutions produced by FLOORIST in
the previous experiment with 32% whitespace, and drop five fixed blocks on top
of these layouts (one in each corner, and a fifth in the middle). We progressively

10 . Michael D. Moffitt, Jarrod A. Roy, lgor L. Markov, and Martha E. Pollack

Table ITI. Performance of legalizers on placements with increasingly larger obstacles.

% of area taken by obs. — 1% 3% 5% 7% 9% 11% 13% 15%
E] % solved 0 0 0 0 0 0 0 0

& ave. % ovlp N/A | N/A | N/A | N/A | N/A | NJA | N/A | N/A
o avg. movement N/A N/A N/A N/A N/A N/A N/A N/A
o avg. runtime (s) N/A N/A N/A N/A N/A N/A N/A | N/A
8 % solved 100 100 100 100 100 100 5 0

] avg. % ovlp 0.272 0.230 0.281 0.265 0.273 0.279 0.360 N/A
A avg. movement 128k 114k 102k 95k 95k 107k 150k | N/A
< avg. runtime (s) 79.7 80.5 84.5 79.3 74.7 72.6 75.4 N/A
2 % solved 100 100 100 100 100 100 100 100
g avg. % ovlp 0 0 0 0 0 0.015 0.876 3.57
s} avg. movement 10k 26k 39k 49k 59k 68k 76k 75k
~ avg. runtime (s) 1.50 3.90 7.69 14.32 | 26.16 | 78.15 297 400

increase the percentage of area consumed by these obstacles from 1% to 15%. Feng-
Shui ignores these obstacles, and makes no effort to repair the floorplan. APlace
requires significant runtime to handle obstacles regardless of problem difficulty, in-
troduces dramatic changes to the layouts and fails to completely resolve overlaps
on module boundaries. FLOORIST performs significantly better on all counts. See
Figure 10 for illustrations.

4.4 Repairing Other Constraint Types

As noted in [Young et al. 2002], non-overlap constraints are just one of many
types of constraints that traditional constraint graphs can express. For instance,
region constraints, proximity constraints, and alignment constraints can all be rep-
resented by edges in the graph, and similarly, their violation can be regarded as
the absence of such edges. Consequently, our conflict-directed approach can repair
these constraints just as easily by manipulating the critical paths that render them
infeasible.

To illustrate this ability, we present a series of images in Figure 12, showing how
FLOORIST repairs a violated region constraint. The initial solution is displayed in
the leftmost layout; one block currently violates an artificially imposed constraint
that requires its center to be aligned with the horizontal midsection of the floorplan.
Second, we show the movement of blocks as displacement vectors, to highlight how
the majority of the modules are largely unaffected by this repair. In the third image
we show the final layout after FLOORIST has repaired this constraint.

4.5 Comparison of Methods for Constructing Layouts from Constraint Graphs

Section 3.3 offers three methods for computing placements: packing, emulation,
and separation. Emulation was used in previous experiments, and we now compare
it with alternatives. For each block in a layout, we find the distance from it to
the closest block in x or y direction, and average this distance for all blocks to
compute the spread. We use the instances from Experiment 2 (with 10% blocks
resized), and average results over the 20 instances. We find that packing is fast and
produces reasonable wirelength, but displaces modules significantly. Emulation is
also efficient but generally preserves the initial placement. Both procedures fail to
provide padding on at least one side of most modules. In contrast, the separation
procedure maintains a healthy distance between pairs of modules, but is an order of
magnitude slower. The difference between the latter two alternatives and APlace’s

Constraint-Driven Floorplan Repair . 11

(e
Lo e

i
L=
!

(a) APlace (Initial) (b) FengShui’s Legalizer

Fig. 9. Legalizing the output of APlace (an analytical global placement tool) on ibm-07.

(a) Initial (b) APlace’s Legalizer (c) Floorist

Fig. 10. Legalizing a placement with obstacles added to the perimeter and center of the floorplan.

Fig. 11. Floorist’s Emulation and Separation techniques compared against APlace’s packing
method.

packing is shown in Figure 11 (the rightmost layout was given a greater amount of
whitespace to illustrate separation).

5. CONCLUSIONS

We have developed a new efficient approach to post-placement floorplan repair. Our
FroorisT algorithm legalizes existing floorplans using constraint-driven, conflict-
directed modifications. In contrast to previous work, FLOORIST modifies only those
features of the layout that are directly responsible for the violated constraints, and
thus preserves the qualities and characteristics of the original layout. The versatility
of our approach makes it useful for a number of applications, as it supports the post-
processing of outputs of a global floorplanner, removes overlaps introduced by the
re-sizing of modules in existing floorplans, and repositions blocks in the presence
of fixed macros and obstacles. In each of these categories, FLOORIST significantly

12 . Michael D. Moffitt, Jarrod A. Roy, lgor L. Markov, and Martha E. Pollack

L = = |
(a) Initial (b) Movement (c) Final

Fig. 12. Imposing a region constraint on a block in the above HB12 instance forces it (and blocks
beneath it) to move down.

outperforms existing tools in solution quality and runtime.

Our formalism does have some limitations; for instance, on instances with mil-
lions of blocks and relatively few overlaps, a great deal of runtime could be spent
propagating constraints between standard cells whose pairwise relationships will
never change. In addition, more intelligent decisions could be made if our legaliza-
tion flow were cognizant of timing information (e.g., a list of timing-critical gates
or paths). These issues, and others, are worthy of continued research.

Acknowledgments. Dr. M. D. Moffitt is supported by the Josef Raviv Memorial Post-
doctoral Fellowship. J. A. Roy is supported by a Rackham Predoctoral Fellowship at the
University of Michigan. Prof. I. L. Markov is partially supported by the National Science
Foundation under grant No. CCF-0448189. Prof. M. E. Pollack is partially supported
by the Air Force Research Laboratory under contract No. FA8750-05-1-0282 and the Air
Force Office of Scientific Research under Contract No. FA9550-04-1-0043. Opinions, find-
ings and conclusions in this work are those of the authors and do not necessarily reflect
the view of funding agencies.

REFERENCES

S. N. AbpvyAa AND I. L. MARKOV. Fixed-outline Floorplanning: Enabling Hierarchical
Design. In IEEE Trans. on VLSI Systems 11(6), pp. 1120-1135, 2003.

U. BRENNER, A. PAuLI, AND J. VYGEN. Almost optimum placement legalization by
minimum cost flow and dynamic programming. In Proc. of ISPD, pp. 2-9, 2004.

C. CHANG, J. CONG, AND X. YUAN. Multi-level placement for large-scale mixed-size IC
designs. In Proc. of ASP-DAC, pp. 325-330, 2003.

J. CoNG, M. ROMESIS, AND J. R. SHINNERL. Fast floorplanning by look-ahead enabled
recursive bipartitioning. In Proc. of ASP-DAC, pp. 1119-1122, 2005.

J. CoNG, M. RoMESIS, AND J. R. SHINNERL. Robust mixed-size placement under tight
white-space constraints. In Proc. of ICCAD, pp. 165-172, 2005.

J. CoNna AND M. XIE. A Robust Detailed Placement for Mixed-Size IC Designs. In Proc.
of ASP-DAC, pp. 188-194, 2006.

A. B. KAHNG, S. REDA, AND Q. WANG. Architecture and details of a high quality,
large-scale analytical placer. In Proc. of ICCAD, pp. 891-898, 2005.

A. KHATKHATE, ET AL. Recursive bisection based mixed block placement. In Proc. of
ISPD, pp. 84-89, 2004.

M. D. MorriTT, A. N. NG, I. L. MARKOV, AND M. E. PoLLACK. Constraint-driven
floorplan repair. In Proc. of DAC, pp. 1103-1108, 2006.

Constraint-Driven Floorplan Repair : 13

M. D. MorrIiTT AND M. E. POLLACK. Optimal rectangle packing: a meta-CSP approach.
In Proc. of ICAPS, pp. 93-102, 2006.

S. NAG AND K. CHAUDHARY. Post-Placement Residual-Overlap Removal with Minimal
Movement. In Proc. of DATE, pp. 581-586, 1999.

H. REN, D. Z. Pan, C. J. ALPERT AND P. VILLARRUBIA. Diffusion-based placement
migration. In Proc. of DAC, pp. 515-520, 2005.

J. A. Roy, S. N. ApvA, D. A. Papra AND I. L. MARKOV. Min-cut floorplacement. In
IEEE Trans. on CAD 25(7), pp. 1313-1326, 2006.

B. Yao, H. CHEN, C.-K. CHENG AND R. GRAHAM. Floorplan representations: Complex-
ity and connections. In ACM TODAES 8(1), pp. 55-80, 2003.

E. Young, M. L. Ho, anDp C. CHU. A Unified Method to Handle Different Kinds of
Placement Constraints in Floorplan Design. In Proc. of ASP-DAC, pp. 661-670, 2002.

