
1

SimPL: An Effective Placement Algorithm
Myung-Chul Kim, Dong-Jin Lee and Igor L. Markov

University of Michigan, Department of EECS, 2260 Hayward St., Ann Arbor, MI 48109-2121

{mckima, ejdjsy, imarkov}@eecs.umich.edu

In memoriam Frank Johannes

Abstract—We propose a self-contained, flat, quadratic
global placer that is simpler than existing placers and
easier to integrate into timing-closure flows. It main-
tains lower-bound and upper-bound placements that
converge to a final solution. The upper-bound placement
is produced by a novel look-ahead legalization algorithm.
Our placer SimPL outperforms mPL6, FastPlace3, NTU-
Place3 , APlace2 and Capo simultaneously in runtime and
solution quality, running 7.10 times faster than mPL6
(when using a single thread) and reducing wirelength by
3% on the ISPD 2005 benchmark suite. More significant
improvements are achieved on larger benchmarks. The
new algorithm is amenable to parallelism, and we report
empirical studies with SSE2 instructions and up to eight
parallel threads.

I. INTRODUCTION

Global placement currently remains at the core of

physical design and is a gating factor for downstream

optimizations during timing closure [3]. Despite im-

pressive improvements reported by researchers [21]

and industry software in the last five years, state-

of-the-art algorithms and tools for placement suffer

several key shortcomings which are becoming more

pronounced at recent technology nodes. These short-

comings fall into four categories: (i) speed, (ii) solu-

tion quality, (iii) simplicity and integration with other

optimizations, (iv) support for multi-threaded execu-

tion. We propose the SimPL algorithm that simultane-

ously improves results in the first three categories and

lends itself naturally to thread-level and instruction-

level parallelism on multicore CPUs.

State-of-the-art algorithms for global placement

form two families: (i) force-directed quadratic plac-

ers, such as Kraftwerk2 [27], FastPlace3 [29] and

RQL [30], and (ii) non-convex optimization tech-

niques, such as APlace2 [16], NTUPlace3 [8] and

mPL6 [7]. Force-directed quadratic algorithms model

total net length by a quadratic function of cell lo-

cations and minimize it by solving a large sparse

system of linear equations. To discourage cell over-

lap, forces are added pulling cells away from high-

density areas. These forces are modeled by pseudopins

Copyright (c) 2011 IEEE. Personal use of this material is permit-
ted. However, permission to use this material for any other purposes
must be obtained from the IEEE by sending an email to pubs-
permissions@ieee.org.

and pseudonets, which extend the original quadratic

function [14]. They are updated after each linear-

system solve until iterations converge. Non-convex

optimization models net length by more sophisticated

differentiable functions with linear asymptotic behavior

which are then minimized by advanced numerical

analysis techniques [16]. Cell density is modeled by

functional terms, which are more accurate than forces,

but also require updates after each change to placement

[8], [16]. Algorithms in both categories are used in the

industry or closely resemble those in industry placers.

Tools based on non-convex optimization achieve the

best results reported for academic implementations [8]

and EDA vendor tools, but are significantly slower,

which is problematic for modern flat SoC placement

instances with tens of millions of movable objects. To

scale the basic non-convex optimization framework,

all tools in this family employ netlist clustering and

multilevel extensions, sometimes at the cost of solution

quality. Such multilevel placers perform many sequen-

tial steps, obstructing efficient parallelization. More-

over, clustering and refinement do not fully benefit

from modern multicore CPUs. Due to their complexity,

multilevel placers are also harder to maintain, improve,

and combine with other physical-design techniques. In

particular, clustered netlists complicate accurate static

timing analysis, congestion maps and physical synthe-

sis transformation, such as performance-driven buffer-

ing, gate sizing, fanin/fanout optimization, cloning,

etc [3]. Hence, timing-closure flows often repeat global

placement 3-4 times, alternating it with timing analy-

sis, physical synthesis and congestion improvement.

State-of-the-art force-directed quadratic placers

tend to run many times faster than non-convex opti-

mization, but also use multilevel extensions in their

most competitive configurations. Their solution quality

is mixed. FastPlace3 underperforms mPL6, but the

industry tool RQL closely related to FastPlace out-

performs these two non-convex placers. Kraftwerk2

is the only competitive flat placer (i.e., it does not

use clustering) and rivals other force-directed quadratic

placers in speed. However, it lags behind in solution

quality and poses several challenges, such as quickly

solving Poisson’s equation, ensuring the convergence

of iterations and avoiding halos of unused space around

macros. Our experience indicates that the performance

2

of Kraftwerk2 can be uneven, and stability can only

be achieved with some loss of solution quality [18].

Several placers are described in the book [21] and

journal papers [4], [8], [27].

Effective parallelization of CAD optimizations often

requires redesign and simplication of entire algorithms

to use fewer components, especially standard solvers,

to avoid well-known limits to parallelism described by

Amdahl’s law. On the other hand, recent literature on

parallel algorithms and GPGPU programming1 often

focuses on algorithms that are easier to parallelize, but

are not the fastest or best-performing available [12],

[15], [19]. Such results may be useful to illustrate

specific parallelization techniques, but do not justify

the need for parallelization. We believe that new EDA

tool development should not solely focus on parallel

processing, but rather on novel high-performance al-

gorithms amenable to parallel processing.

In this work, we develop a new, self-contained tech-

nique for global placement that ranks as a flat partition-

based and force-directed placement algorithm. It main-

tains lower-bound and upper-bound placements that

converge to a final solution. The upper-bound place-

ment is produced by a novel look-ahead legalization al-

gorithm based on top-down geometric partitioning and

non-linear scaling. Our implementation outperforms

published placers simultaneously in solution quality

and speed on standard benchmarks. The lower-bound

placement is produced by solving a linear system with

spreading forces. Our algorithm is simpler, and our

attempts to improve overall results using additional

modules and extensions from existing placers (such as

netlist clustering [7], [16], [29], iterative local refine-

ment (ILR) [29], and median-improvement (BoxPlace)

[18]) were unsuccessful.

In the remainder of this paper, Section II describes

the building blocks from which our algorithm was

assembled. Section III introduces our key ideas and

articulates our solution of the force modulation prob-

lem. The SimPL algorithm is presented in Section IV

along with complexity analysis. Extensions and im-

provements are discussed in Section V, and empirical

validation is described in Section VI. The use of par-

allelism is discussed in Section VII, and Section VIII

summarizes our results.

II. ESSENTIAL CONCEPTS AND BUILDING BLOCKS

Circuit placement typically operates on a gate-level

netlist, which consists of standard cells (NAND, NOR,

MUX, half-adders, etc) and interconnect. Each stan-

dard cell has rectangular footprint with well-defined

area. Some standard cells drive multiple other cells —

such interconnects are captured by signal nets. Given

1GPGPU programming = General-Purpose programming on GPUs
(Graphics Processing Units) [12], [15].

a netlist N = (E, V) with nets E and nodes (cells)

V, global placement seeks node locations (xi, yi) such
that the area of nodes within any rectangular region

does not exceed the area of (cell sites in) that re-

gion.2 Some locations of cells may be given initially

and fixed. The interconnect objective optimized by

global placement is the Half-Perimeter WireLength

(HPWL). For node locations ~x = {xi} and ~y = {yi},
HPWLN (~x,~y)= HPWLN (~x)+HPWLN (~y), where

HPWLN (~x) = Σe∈E [max
i∈e

xi − min
i∈e

xi] (1)

Efficient optimization algorithms often approximate

HPWLN by differentiable functions, as illustrated next.

Quadratic optimization. Consider a graph G =
(EG , V) with edges EG , vertices V and edge weights

wij > 0 for all edges eij ∈ EG . The quadratic

objective ΦG is defined as

ΦG(~x,~y) = Σi,jwi,j [(xi − xj)
2 + (yi − yj)

2] (2)

Its x & y components are cast in matrix form [4], [27]

ΦG(~x) =
1

2
~xT Qx~x +~cT

x~x + const (3)

The Hessian matrix Qx captures connections between

pairs of movable vertices, while vector ~cx captures

connections between movable and fixed vertices [17,

Section 4.3.2]. When Qx is non-degenerate,ΦG(~x) is a
strictly convex function with a unique minimum, which

can be found by solving the system of linear equations

Qx~x = −~cx. Solutions can be quickly approximated

by iterative Krylov-subspace techniques, such as the

Conjugate Gradient (CG) method and its variants [26].

Since Qx is symmetric positive definite, CG iterations

provably minimize the residual norm. The convergence

is monotonic [28], but its rate depends on the spectral

properties of Qx, which can be enhanced by precondi-

tioning. In other words, we solve the equivalent system

P−1Qx = −P−1~cx for a nondegenerate matrix P ,

such that P−1 is an easy-to-compute approximation of

Q−1

x . Given that Qx is diagonally dominant, we chose

P to be its diagonal, also known as the Jacobi pre-

conditioner. Our placement algorithm (Section IV-C)

deliberately enhances diagonal dominance in Qx.

The Bound2Bound net model [27]. To represent the

HPWL objective by the quadratic objective, the netlist

N is transformed in two graphs, Gx and Gy , that

preserve the node set V and represent each two-pin

net by a single edge with weight 1/length. Larger nets
are decomposed depending on the relative placement

of vertices — for each p-pin net, the extreme nodes

(min and max) are connected to each other and to each

2In practice, this constraint is enforced for bins of a regular grid.
The layout area is subdivided into equal, disjoint, small rectangles,
and each rectangle limits total area of cells placed within.

3

internal node by edges, with the following weight

wB2B
x,ij =

1

(p − 1)|xi − xj |
(4)

For example, 3-pin nets are decomposed into cliques

with edge weight 1/2l, where l is the length of a

given edge. In general, this quadratic objective and

the Bound2Bound (B2B) net decomposition capture

the HPWL objective exactly, but only for the given

placement. As locations change, the error may grow,

necessitating multiple updates throughout the place-

ment algorithm.

Most quadratic placers use the placement-

independent star or clique decompositions, so as

not to rebuild Qx and Qy many times [4], [29], [30].

Yet, the B2B model uses fewer edges than cliques

(p > 3), avoids new variables used in stars, and is

more accurate than both stars and cliques [27].

III. KEY IDEAS IN OUR WORK

Analytic placement techniques first minimize a func-

tion of interconnect length, neglecting overlaps be-

tween standard cells, macros, etc. This initial step

places many cells in densely populated regions, typ-

ically around the center of the layout. Cell locations

are then gradually spread through a series of placement

iterations, during which interconnect length slowly

increases, converging to a final overlap-free placement

(a small amount of overlap is often allowed and later

resolved during detailed placement).

Our algorithm also starts with pure interconnect

minimization, but its next step is unusual — most

overlaps are removed using a fast look-ahead legalizer

based on top-down geometric partitioning and non-

linear scaling. Locations of movable objects in the

legalized placement serve as anchors to coerce the ini-

tial locations into a configuration with less overlap, by

adding pseudonets to baseline force-directed placement

[14].

Each subsequent iteration of our algorithm produces

(i) an almost-legal placement that overestimates the

final result — through look-ahead legalization, and

(ii) an illegal placement that underestimates the final

result — through linear system solver. The wirelength

gap between lower-bound and upper-bound placements

helps monitor convergence (Section IV-C).

Solving the force-modulation problem. A key in-

novation in SimPL is the interaction between the

lower-bound and the upper-bound placements — it

ensures convergence to a no-overlap solution while

optimizing interconnect length. It solves two well-

known challenges in analytic placement: (1) finding

directions in which to spread the locations (force orien-

tation), and (2) determining the appropriate amount of

spreading (force modulation) [18], [30]. This is unlike

previous work, where spreading directions are typi-

cally based on local information, e.g., placers based

on non-convex optimization use gradient information

and require a large number of expensive iterations.

Kraftwerk2 [27] orients spreading forces according to

solutions of Poisson’s equation, providing a global

perspective and speeding up convergence. However,

this approach does not solve the force-modulation

problem, as articulated in [18].3 The authors of RQL

[30], which can be viewed as an improvement on

FastPlace, revisit the force-modulation problem and

address it by a somewhat ad hoc limit on the mag-

nitude of spreading forces. In our work, the look-

ahead legalization algorithm (Section IV-B), invoked

at each iteration, determines both the direction and

the magnitude of spreading forces. It is global in

nature, accounts for fixed obstacles, and preserves

relative placement to ensure interconnect optimization

and convergence. Our placement algorithm does not

require exotic components, such as a Poisson-equation

solver used by Kraftwerk; our C++ implementation is

self-contained.

Global placement with look-ahead. The legalized

upper-bound placements constructed at every iteration

of our placer can be viewed as look-ahead because

they are used only temporarily and not refined directly.

They pull cell locations in lower-bound placements

not just away from dense regions, but also toward the

regions where space is available. Such area look-ahead

is particularly useful around fixed obstacles, where

local information does not offer sufficient guidance.

While not explored in this paper, similar congestion

look-ahead and timing look-ahead based on legalized

placements can be used to integrate our placement

algorithm into modern timing-closure flows.

IV. OUR GLOBAL PLACEMENT ALGORITHM

Our placement technique consists of three phases:

initial placement, global placement iterations and post-

global placement (Figure 1). Initial placement, de-

scribed next, is mostly an exercise in judicious appli-

cation of known components. Our main innovation is

in the global placement phase. Post-global placement

is straightforward, given current state of the art.

A. Initial Placement

Our initial-placement step is conceptually similar to

those of other force-directed placers [27], [29], [30]

— it entirely ignores cell areas and overlaps, so as to

minimize a quadratic approximation of total intercon-

nect length. We found that this step notably impacts

the final result. Therefore, unlike FastPlace3 [29] and

RQL [30], we use the more accurate Bound2Bound net

3The work in [18] performs force modulation with line search but
is not currently competitive with state of the art.

4

Fig. 1. The SimPL algorithm uses placement-dependent B2B
net model, which is updated on every iteration. Gap refers to the
difference between upper and lower bounds.

model from [27] reviewed in Section II. After the first

quadratic solve, we rebuild the circuit graph because

the B2B net model is placement-dependent. We then

alternate quadratic solves and graph rebuilding until

HPWL stops improving. In practice, this requires a

small number of iterations (5-7), regardless of bench-

mark size, because the relative ordering of locations

stabilizes quickly.

B. Look-ahead Legalization

Consider a set of cell locations with a significant

amount of overlap as measured using bins of a regular

grid. Look-ahead legalization changes the global posi-

tioning of those locations, seeking to remove most of

the overlap (with respect to the grid) while preserving

the relative ordering. This task can be formulated at

different geometric scales by varying the grid. The

quality of look-ahead legalization is measured by its

impact on the entire placement flow. Our look-ahead

legalization is based on top-down recursive geometric

partitioning and non-linear scaling, as outlined in Algo-

rithm 1. Cutlines Cc and CB are chosen to be vertical

at the top level and they alternate between horizontal

and vertical directions with each successive level of

top-down geometric partitioning.

Handling density constraints. For each grid bin of

a given regular grid, we calculate the total area of

contained cells Ac and the total available area of cell

sites Aa. A bin is γ-overfilled if its cell density Ac/Aa

exceeds given density limit 0 < γ < 1. Adjacent γ-
overfilled bins are clustered by Breadth-First Search

Algorithm 1 Look-ahead Legalization by Top-down

Geometric Partitioning and Non-linear Scaling

Maximum allowed density γ, where 0 < γ < 1
Current grid cell size
Floorplan with obstacles
Placement of cells
Queue of bin clusters Q = ∅

1: Identify γ-overfilled bins and cluster them // Fig. 2(a)
2: foreach cluster c do

3: Find a minimal rectangular region R ⊃ c with density(R) ≤ γ
4. R.level=1
5: Q.enqueue(R)
6: while !Q.empty() do
7: B=Q.dequeue()
8: if (Area(B) < 4·grid cell size || B.level ≥ 10) then
9: continue

10: M={movable cells in B}
11: if (B.level % 2 == 0) then axis direction D=HORIZ
12: else axis direction D=VERT
13: Cc=D-aligned cutline to evenly split cell area in M
14: CB=D-aligned cutline to evenly partition whitespace in B
15: (S0, S1)={two sub-regions of B created by cutline Cc}
16: M0={movable cells in S0}
17: M1={movable cells in S1}
18: (B0, B1)={two sub-regions of B created by cutline CB}
19: Perform NON-LINEAR SCALING on M0 ⊥ to D in B0

20: Perform NON-LINEAR SCALING on M1 ⊥ to D in B1

21: B0.level=B1.level=B.level+1
22: Q.enqueue(B0)
23: Q.enqueue(B1)
24: end while

25: end foreach

(BFS), and look-ahead legalization is performed on

such clusters. For each cluster, we find a minimal

containing rectangular region with density ≤ γ (these

regions can also be referred to as “clusters”). A key

insight is that overlap removal in a region, which

is filled to capacity, is more straightforward because

the absence of whitespace leaves less flexibility for

interconnect optimization.4 If relative placement must

be preserved, overlap can be reduced by means of x-
and y-sorting with subsequent greedy packing. The

4In the presence of whitespace, the placer can move cells around
without changing their relative ordering [2]. Removing whitespace
suppresses this degree of freedom, giving fewer choices to the placer.

(a) (b)

Fig. 2. Clustering of overfilled bins in Algorithm 1 and adjustment
of cell-area to whitespace median by non-linear scaling (also see
Figure 3). Movable cells are shown in blue, obstacles in solid gray.

5

Fig. 3. Non-linear scaling in a region with obstacles (I): the
formation of CB -aligned stripes (II), cell sorting by distance from
CB (III), greedy cell positioning (IV).

next step, non-linear scaling, implements this intuition,

but relies on cell-area cutline Cc chosen in Algorithm

1 and shifts it toward the median of available area CB

in the region, so as to equalize densities in the two

sub-regions (Figure 2).

Non-linear scaling in one direction is illustrated in

Figure 3, where a new region was created by a vertical

cutline CB during top-down geometric partitioning.

This region is subdivided into vertical stripes parallel

to CB . First, cutlines are drawn along the boundaries

of obstacles present in this region. Each vertical stripe

created in this process is further subdivided (by up

to 10 evenly distributed cutlines) if its available area

exceeds 1/10 of the region’s available area. Movable

cells in the corresponding sub-region created by Cc

are then sorted by their distance from CB and greedily

packed into the stripes in that order. In other words, the

cell furthest from the cutline is assigned to the furthest

stripe. Each subsequent cell is assigned to the furthest

stripe that is not filled yet.

For each stripe, we calculate the available site

area Aa and consider the stripe filled when the area

of assigned cells reaches γAa. Cell locations within

each stripe are linearly scaled from current locations

(non-linearity arises from different scaling in different

stripes).

Look-ahead legalization applies non-linear scaling in

alternating directions, as illustrated in Figure 4 on one

of ISPD 2005 benchmarks. Here, a region R is selected

 0 2000 4000 6000 8000 10000 12000

 0 2000 4000 6000 8000 10000 12000

Fig. 4. Non-linear scaling after the first vertical cut and two
subsequent horizontal cuts (ADAPTEC1) from intermediate steps
between iterations 0 and 1 in Figure 7.

Fig. 5. An anchor with a pseudonet.

that contains overfilled bins, but is wide enough to

facilitate overlap removal. R is first partitioned by

a vertical cutline, after which non-linear scaling is

applied in the two new sub-regions. Subsequently,

look-ahead legalization (Algorithm 1) considers each

sub-region individually and selects different horizontal

cutlines. Four rounds of non-linear scaling follow,

spreading cells over the region’s expanse (Figure 4).

Despite a superficial similarity to cell-shifting in

FastPlace [29], our non-linear scaling does not use cell

locations to define bins/ranges, or map ranges onto a

uniform grid.

Cutline shifting. Median-based cutlines are neither

necessary nor sufficient for good solution quality. We

therefore adopt a fast cutline positioning technique

from [24]. On benchmarks whose obstacles cover

<20% of total sites area, we find cutline positions

Cc minimizing net cut for the top two levels of top-

down geometric partitioning, with <60% of cell area

per partition. We record the ratio ρ of cell areas in the

two partitions and adjust the region’s CB cutline to the

position that partitions the region’s available area with

the same ratio ρ. A related technique called ACG was

developed at IBM in the context of min-cut placement,

and their paper [2] describes relevant intuition.

C. Global Placement Iterations

Using legalized locations as anchors. Solving an

unconstrained linear system results in a placement

with significant amount of overlap. To pull cells away

from their initial positions, we gradually perturb the

linear system. As explained in Section IV-B, at each

iteration of our global placement, top-down geometric

partitioning and non-linear scaling generates a roughly

legalized solution. We use these legalized locations

as fixed, zero-area anchors connected to their cor-

responding cells in the lower-bound placement with

artificial two-pin pseudonets. Furthermore, following

the discussion in Section II, we note that connections to

fixed locations do not increase the size of the Hessian

matrix Q, and only contribute to its diagonal elements

[17, Section 4.3.2]. This enhances diagonal dominance,

condition number of P−1Q, and the convergence rate

of Jacobi-preconditioned CG.

In addition to weights given by the B2B net model

on pseudonets, we control cell movement and iteration

6

convergence by multiplying each pseudonet weight

by an additional factor α > 0 computed as α =
0.01 · (1 + iterationNumber). At early iterations,

small α values weaken spreading forces, giving greater

significance to interconnect and more freedom to the

linear system solver. As the relative ordering of cells

stabilizes, increasing α values boost the pull toward

the anchors and accelerate the convergence of lower

bounds and upper bounds.

Grid resizing. To identify γ-overfilled bins, we overlay
a uniform grid over the entire layout. The grid size is

initially set to Sinit = 100×100 to accelerate the look-

ahead legalization. However, in order to accurately cap-

ture the amount of overlap, the grid cell size decreases

by β = 1.06 at each iteration of global placement

until it reaches 4× the average movable cell size.5

Grid resizing also affects the clustering of γ-overfilled
bins during look-ahead legalization (Section IV-B),

effectively limiting the amount of cell movement and

encouraging convergence at later iterations. A progres-

sion of global placement is annotated with HPWL

values in Figure 7. The upper-bound placements on the

right appear blocky in the first iteration, but gradually

refine with grid resizing.

Convergence criteria. A convergence criterion similar

to that in Section IV-A can be adopted in global

placement. We alternate (1) look-ahead legalization,

(2) updates to anchors and the B2B net model, and (3)

solution of the linear system, until HPWL of solutions

generated by look-ahead legalization stops improving.

Unlike in the initial placement step, however, HPWL

values of upper-bound solutions oscillate during the

first 4-7 iterations, as illustrated in Figure 6. To prevent

premature convergence, we monitor the gap between

the lower and upper bounds. Global placement con-

tinues until (1) the gap is reduced to 25% of the

gap in the 10th iteration and upper-bound solution

stops improving or (2) the gap is smaller than 10%

of the gap in the 10th iteration. On the ISPD 2005

benchmark suite, this convergence criterion entails 26-

47 iterations of global placement. The final set of

locations (global placement) is produced by the last

look-ahead legalization as shown in Figure 1.

Convergence is guaranteed by the increasing weights

of pseudonets. At each iteration, these pseudonets

pull the lower-bound placement toward a legalized

upper-bound placement. As the lower-bound placement

becomes closer to a legal placement, it exhibits a

decreasing amount of cell overlap. This, in turn, results

in smaller cell displacements during look-ahead legal-

ization. In the extreme, very high pseudonet weights

force the lower-bound placement so close to the upper-

5This is similar to mesh sizing for finite-element methods in
numerical analysis and especially in adaptive mesh refinement. Pa-
rameters can be optimized for benchmark suites using binary search.
However, we have not tuned parameters to indiviual benchmarks.

4.0e+7

6.0e+7

8.0e+7

1.0e+8

1.2e+8

1.4e+8

1.6e+8

 0 10 20 30 40 50
 0

 10

 20

 30

 40

 50

H
P

W
L

S
c
a

le
d

 O
v
e

rf
lo

w
 p

e
r

b
in

Iteration number

Wirelength lower bound

Scaled overflow per bin

Wirelength upper bound

Legal solution

4.0e+7

6.0e+7

8.0e+7

1.0e+8

1.2e+8

1.4e+8

1.6e+8

 0 10 20 30 40 50
 0

 10

 20

 30

 40

 50

H
P

W
L

S
c
a

le
d

 O
v
e

rf
lo

w
 p

e
r

b
in

Iteration number

Wirelength lower bound

Scaled overflow per bin

Wirelength upper bound

Legal solution

Fig. 6. Lower and upper bounds for HPWL, the scaled overflow
per bin of the lower-bound placement at each iteration, and HPWL
of the legal placement (ADAPTEC1).

bound placement, that look-ahead legalization does

not change it, resulting in immediate convergence.6 In

practice, pseudonet weights are changed gradually to

ensure low interconnect length. After the first few iter-

ations, one typically observes monotonic convergence,

as illustrated in Figure 6.

D. Asymptotic Complexity Analysis

Modern placement algorithms are too complicated

for asymptotic complexity analysis, but the bottlenecks

of the SimPL algorithm yield to traditional analysis.

The runtime of global placement iterations is dom-

inated by the Conjugate Gradient (CG) solver and

look-ahead legalization. The complexity of each CG

invocation is O(m
√

κ), where κ is the conditioning

number of the matrix and m is the number of non-

zero elements [28]. The number of non-zeros reflects

the number of graph edges in the B2B model of the

netlist. It grows linearly with the number of pins (cell-

to-net connections) — a key size metric of a netlist.

Another way to estimate the number of non-zeros is to

observe that the average cell degree (the number of nets

connected to a cell) is bounded by d = 5, or perhaps
a slightly larger constant, for practical netlists.7 Since

m ≤ (d + 1)n for n cells,8 CG runs in O(n
√

κ) time.

Asymptotic runtime of look-ahead legalization is

dominated by sorting cell locations by their x and

y coordinates because non-linear scaling takes O(n)
time (several other linear-time steps take even less time

in practice, therefore we do not discuss them). Given

that look-ahead legalization operates on blocks of pro-

gressively smaller size, we can separately consider its

6This convergence argument only assumes that look-ahead legal-
ization does not change an upper-bound placement. It does not make
any other assumptions about the look-ahead legalization algorithm
or consistency of its results between iterations. Neither does it say
anything about the quality of results.

7Even with large macros, whose number is limited by design area.
8Including diagonal matrix elements.

7

processing pass for the top-level blocks, then the pass

for half-sized blocks, etc. Only O(log n) such passes

are required for n cells. Each pass takes O(n log n)
time because top-level blocks do not experience sig-

nificant overlaps — in fact, each subsequent pass

becomes faster because sorting is applied to smaller

groups of cells. Hence, look-ahead legalization runs in

O(n log2 n) time.

We have observed that due to preconditioning, itera-

tion counts in CG grow no faster than log n, and each

iteration takes linear time in n. Therefore one global

placement iteration takes O(n log2 n) time.

Empirically, SimPL requires <50 placement itera-

tions, even for circuits with millions of cells. While

the number of iterations might grow for larger circuits,

this growth is very slow — possibly a polylog func-

tion of n. Empirical results in Section VI show that

SimPL’s advantage in runtime and solution quality over

its closest competitor (FastPlace3) increases on larger

netlists. Min-cut placement (Capo) exhibits asymptotic

complexity O(n log2 n), but lags behind SimPL in

runtime and quality.

Space complexity of our algorithms is linear in the

size of the input, and our implementations require a

modest amount of memory.

V. EXTENSIONS AND IMPROVEMENTS

The algorithm in Section IV can be improved in

terms of runtime and solution quality. However, some

of our attempts at improvement were unsuccessful. We

report them here to warn the reader about their futility.

A. Selecting Windows for Look-ahead Legalization

During early global iterations, most movable cells of

the lower-bound placement reside near the center of the

layout region (Figure 7). In such cases, there is usually

one expanded minimal rectangular region (cluster) that

will encompass most of γ-overfilled bins. However,

as global iterations progress, γ-overfilled bins will

be scattered around the layout region, and multiple

clusters of bins may exist. In our implementation,

we process γ-overfilled bins in the decreasing order

of density. Each expansion stops when the cluster’s

density drops to γ or the cluster abuts the boundaries

of previously processed clusters. This strategy may

generate incompletely expanded clusters, especially in

mid-stages of global placement iterations. However, as

the densest bins are processed first, the number of

regions with peak density is guaranteed to decrease

at every iteration except when the peak density itself

decreases. At each iteration of global placement, look-

ahead legalization is repeated up to ten times with

increasing grid cell sizes until maximal density is

decreased below γ.

 0 2000 4000 6000 8000 10000 12000

HPWL= 4.484e+07, Stage=IP, Iter=0

 0 2000 4000 6000 8000 10000 12000

HPWL= 1.501e+08, Stage=LL, Iter=1

 0 2000 4000 6000 8000 10000 12000

HPWL= 5.556e+07, Stage=LSS, Iter=2

 0 2000 4000 6000 8000 10000 12000

HPWL= 1.173e+08, Stage=LL, Iter=3

 0 2000 4000 6000 8000 10000 12000

HPWL= 6.496e+07, Stage=LSS, Iter=10

 0 2000 4000 6000 8000 10000 12000

HPWL= 9.208e+07, Stage=LL, Iter=11

 0 2000 4000 6000 8000 10000 12000

HPWL= 6.824e+07, Stage=LSS, Iter=20

 0 2000 4000 6000 8000 10000 12000

HPWL= 8.572e+07, Stage=LL, Iter=21

Fig. 7. A progression of global placement snapshots from differ-
ent iterations and algorithm steps (adaptec1). IP=Initial Placement,
LL=Look-ahead Legalization, LSS=Linear System Solver. Left-side
placements show lower bounds and right-side placements show
upper bounds.

B. Improving Asymptotic Runtime Complexity of Look-

ahead Legalization

As explained in Section IV-D, asymptotic runtime

of look-ahead legalization is largely determined by

sorting cells by positions in directions perpendicular to

cutlines. This sorting occurs at each level of top-down

geometric partitioning. One way to improve asymptotic

runtime complexity of look-ahead legalization is to

invoke sorting less often, given that look-ahead legal-

ization is to preserve the relative ordering among cells.

Instead of sorting cells in each sub-region, we first

establish two cell arrays sorted by x-coordinates and

y-coordinates, respectively. At the second level of top-

down geometric partitioning, two sub-regions inherit

corresponding cells in-order from two sorted arrays

of cells. In this way, if sorting is performed once at

the top level of geometric partitioning, sorting at all

successive levels can be replaced by selecting appro-

priate cells belong to current region in-order from two

sorted arrays of higher level. This improves asymptotic

runtime complexity of look-ahead legalization from

O(n log2 n) time to O(n log n).

8

Benchmark APLACE2.0 CAPO10.5 FASTPLACE3.0 MPL6 NTUPLACE3 SIMPL

size (#cells) HPWL Time HPWL Time HPWL Time HPWL Time HPWL Time HPWL Time

AD1 211K 78.35 35.02 88.14 25.95 78.16 2.50 77.93 18.36 81.82 8.20 76.87 2.47

AD2 255K 95.70 50.57 100.25 36.06 93.56 3.66 92.04 19.91 88.79 7.57 90.37 3.40

AD3 452K 218.52 119.53 276.80 78.19 213.85 8.48 214.16 58.92 214.83 15.62 206.38 6.68

AD4 496K 209.28 131.57 231.30 79.32 198.17 7.10 193.89 55.95 195.93 16.18 186.00 5.88

BB1 278K 100.02 44.91 110.92 41.78 96.32 3.77 96.80 22.82 98.41 13.22 95.85 3.47

BB2 558K 153.75 100.96 162.81 80.55 154.91 9.62 152.34 61.55 151.55 26.17 143.56 7.58

BB3 1.10M 411.59 209.24 405.40 182.94 365.59 21.59 344.10 85.23 360.07 51.08 336.19 13.02

BB4 2.18M 871.29 489.05 1016.19 567.15 834.19 40.93 829.44 189.83 866.43 115.06 796.78 37.37

Geomean 1.09× 15.34× 1.20× 12.17× 1.05× 1.20× 1.03× 7.10× 1.05× 3.05× 1.00× 1.00×

TABLE I
LEGAL HPWL (×10E6) AND TOTAL RUNTIME (MINUTES) COMPARISON ON THE ISPD 2005 BENCHMARK SUITE. EACH PLACER RAN

AS A SINGLE THREAD ON A 3.2GHZ LINUX WORKSTATION. HPWL WAS COMPUTED BY THE GSRC BOOKSHELF EVALUATOR [1].
FULL NAMES OF BENCHMARKS ARE ABBREVIATED: “AD” FOR “ADAPTEC” AND “BB” FOR “BIGBLUE”.

C. Unsuccessful Attempts at Improvement

Compared to other placement algorithms, SimPL uses

a very modest set of interconnect optimizations. There-

fore, we experimented with adding to SimPL several

algorithms that were reported essential to the perfor-

mance of other placers.

1. Our first attempt was to use netlist clustering

to extend SimPL into a multilevel algorithm [7],

[16], [29]. To this end, we implemented BestChoice

clustering [20] used in FastPlace3 and were able to

match its performance observed in FastPlace3 logs.

This accelerated the initial CG solve in SimPL by

about 2×, with essentially the same quality of results,

but unclustering increased the amount of cell overlaps,

and the refinement techniques that we tried were either

ineffective or too time-consuming.

2. In our second attempt, we implemented itera-

tive local refinement (ILR) [29], which is a stage of

FastPlace-global where it spends 40-50% of its run-

time. ILR is a simple move-based algorithm that post-

processes results of quadratic placement by relocating

cells to nearby grid bins, while keeping track of both

HPWL and cell density. ILR did improve the results of

our early prototypes, but adding it to SimPL does not

improve final results. We believe that our look-ahead

legalization algorithm provides sufficient density con-

trol with a moderate increase in HPWL. We also tried,

unsuccessfully, the median-improvement (BoxPlace)

algorithm from [18], which moves single cells to their

HPWL-optimal locations, while considering adjacent

cells fixed.

3. In a third attempt, we evaluated ad hoc force

modulation used in RQL [30] that neglects 10%

strongest forces. Sweeping the range from 1% to 10%

did not reveal any improvement in our experiments.

4. In our fourth attempt at improvement, we re-

ordered vertices in the netlist to improve memory local-

ity for each invocation of CG. This technique is often

applied to the matrices of linear systems and is known

to reduce cache misses and runtime. We implemented

the Reverse Cuthill-McKee (RCM) reordering, which

is standard in numerical analysis. The locality of nets

has significantly improved. However, CG did not run

faster on any of our benchmarks— the default ordering

in our benchmarks was already good enough.

In summary, we obtain state-of-the-art results with-

out extensions reported essential to other placers (Fast-

Place3 [29], FDP [18], and RQL [30]). We have also

experimented with several preconditioners for CG, but

found the simplest of them — the diagonal (Jacobi)

preconditioner — to work best in our application.

VI. EMPIRICAL VALIDATION

Our implementation was written in C++ and com-

piled with g++ 4.4.0. Unless indicated otherwise,

benchmark runs were performed on an Intel Core

i7 Quad CPU Q660 Linux workstation running at

3.2GHz, using only one CPU core. We compared

SimPL to other academic placers on the ISPD 2005

placement contest benchmark suite with target density

γ=1.0. Focusing on global placement, we delegate

final legalization (into rows and sites) and detailed

placement to FastPlace-DP [22], but post-process it by

a greedy cell-flipping algorithm from Capo [6]. HPWL

of solutions produced by each placer is computed by

the GSRC Bookshelf Evaluator [1].

A. Analysis of Our Implementation

The SimPL global placer is a stand-alone tool that

includes I/O, initial placement and global placement it-

erations. Living up to its name, it consists of fewer than

5,000 lines of C++ code and relies only on standard

C++ libraries. There are four command-line parameters

that affect performance — two for grid resizing (initial

and step), and two for pseudonet weighting (initial

and step). In all experiments we used default values

described in Section IV.

Running in a single thread, SimPL completes the

entire ISPD 2005 benchmark suite in 1 hour 18 min-

utes, placing the largest benchmark, BIGBLUE4 (2.18M

cells), in 38 minutes using 2.1GB of memory. We

report the runtime breakdown on BIGBLUE4 according

to Figure 1, excluding 1.4% runtime for I/O.

Initial placement takes 5.0% of total runtime, of

which 3.7% is spent in CG, and 1.3% in building

B2B net models and sparse matrices for CG. Global

9

placement iterations take 47.4%, of which 19% is

in the CG solver, and 9.9% is in sparse matrix con-

struction and B2B net modeling. Inserting pseudonets

takes 0.8%, and look-ahead legalization 17.7%. Post-

global placement takes 46.2%, predominantly in de-

tailed placement. Greedy orientation improvement and

HPWL evaluation were almost instantaneous.

B. Comparisons to State-of-the-art Placers

We compared SimPL to other placers whose binaries

are available to us.

We run each available placer,9 including SimPL, in

default mode and show results in Table I. The HPWL

results reported by APlace2 [16], Capo10.5 [6], [25]

and mPL6 [7] were confirmed by the GSRC Bookshelf

Evaluator. However, FastPlace3 [29] reported lower

HPWL by 0.25% to 0.96%. For consistency, we report

the readings of the GSRC Bookshelf evaluator.

SimPL found placements with the lowest HPWL for

seven out of eight circuits in the ISPD 2005 benchmark

suite (no parameter tuning to specific benchmarks

was employed). On average, SimPL obtains wirelength

improvement of 7.73%, 16.47%, 4.38%, 2.98%, and

4.48% versus APlace2, Capo10.5, FastPlace3, mPL6,

and NTUPlace3 respectively. SimPL was also the

fastest among the placers on all eight circuits. It is

7.01 times faster than mPL6, which appears to be

the strongest pre-existing placer. SimPL is 1.20 times

faster than FastPlace3, which has been the fastest

academic placer so far.

While we managed to obtain almost all best-

performing academic placers in binaries, RQL report-

edly outperforms mPL6 in HPWL by a small amount

[30]. Comparing our HWPL results to numbers in [30],

we observe five wins for SimPL and three losses. RQL

is 3.1 times faster than mPL6, making it more than

twice as slow as SimPL.

C. Scalability Study

To demonstrate SimPL’s scalability to larger netlists,

we generated variants of ISPD 2005 benchmarks with

netlists that are twice as big with the same area

utilization. In such a double-sized benchmark, each

movable cell is split in two cells of smaller size, and

each connection to the original cell is inherited by one

of the split cells. Additionally, the two split cells are

connected by a new two-pin net (Figure 8).

Fig. 8. Generation of double-sized netlists.

9The KraftWerk2 binary we obtained did not run on our system.

We compared SimPL to FastPlace3, mPL6, and

NTUPlace3 on the double-sized benchmark suite and

show results in Table II. mPL6 could not finish

bigblue4. For bigblue3, FastPlace-DP was unable to

completely legalize solutions produced by FastPlace3-

global, hence we post-processed FastPlace-DP with

Capo10.5’s legalizer.

SimPL was the fastest among the placers on all

eight circuits. It is 8.96 times faster than mPL6, and

1.49 times faster than FastPlace3. SimPL also found

placements with the lowest HPWL for six out of eight

circuits in the double-sized ISPD 2005 benchmark

suite (no parameter tuning to specific benchmarks was

employed). Comparing results in Table II to those

in Table I, we observe that our placer has greater

advantage on larger benchmarks. Furthermore, our

runtime comparisons include detailed placement, but

if SimPL is compared to FastPlace3-global without

detailed placement, the average speed-up increases to

1.82 times from 1.58 times.

Compared to other placers, our implemantation uses

a modest amount of memory — 1.65 times and 2.39

times less than mPL6 and NTUPlace3 repsectively, and

1.61 times more than FastPlace3. SimPL is using more

memory than FastPlace3 when it constructs sparse

matrices based on the Bound2Bound net model.

VII. SPEEDING UP PLACEMENT USING

PARALLELISM

Further speed-up is possible for SimPL on worksta-

tions with multicore CPUs.

A. Algorithmic Details

Runtime bottlenecks in the sequential variant of

the SimPL algorithm (Section VI-A) — updates to

the B2B net model and the CG solver — can be

parallelized. Given that the B2B net model is separable,

we process the x and y cases in parallel. When more

than two cores are available, we split the nets of

the netlist into equal groups that can be processed

by multiple threads. To parallelize the CG solver, we

applied a coarse-grain row partitioning [13] scheme

to the Hessian Matrix Q, where different blocks of

rows are assigned to different threads using OpenMP

[11]. A critical kernel operation in CG is the Sparse

Matrix-Vector multiply (SpMxV). Memory bandwidth

is a known performance bottleneck in a uniprocessor

environment [10], and its impact is likely to aggravate

when multiple cores access the main memory through

a common bus. We reduce memory bandwidth demand

of SpMxV by using the CSR (Compressed Sparse Row)

[26] memory layout for the Hessian matrix Q.

In addition to thread-level parallelism, our imple-

mentation makes use of streaming SIMD extensions

10

Ckts FASTPLACE3.0 MPL6 NTUPLACE3 SIMPL

HPWL Time Memory HPWL Time Memory HPWL Time Memory HPWL Time Memory

AD1X2 80.30 3.67 0.20 79.11 24.95 0.43 80.20 19.6 0.72 77.02 3.05 0.36

AD2X2 98.88 6.06 0.23 93.64 38.00 0.82 91.56 17.6 0.86 92.41 4.11 0.36

AD3X2 258.71 13.47 0.42 232.87 88.71 1.11 225.32 44.7 1.62 215.56 7.58 0.71

AD4X2 219.35 11.54 0.44 206.24 85.72 1.16 197.90 39.6 1.76 193.18 7.25 0.69

BB1X2 97.93 5.68 0.25 100.37 30.35 0.53 99.33 22.0 0.93 96.39 4.71 0.43

BB2X2 164.74 12.13 0.49 159.24 79.84 1.22 154.47 44.2 1.94 148.43 9.02 0.77

BB3X2 515.61 49.89 0.93 395.26 172.96 3.38 386.65 154.9 3.82 403.40 22.24 1.44

BB4X2 865.30 56.36 1.94 fail fail fail 866.78 267.9 7.86 854.64 42.43 2.91

Geomean 1.10× 1.49× 0.62× 1.04× 8.96× 1.65× 1.02× 4.40× 2.39× 1.00× 1.00× 1.00×

TABLE II
LEGAL HPWL (×10E6), TOTAL RUNTIME (MINUTES), AND PEAK MEMORY USAGE (GIGABYTES) COMPARISON ON THE

DOUBLE-SIZED ISPD 2005 BENCHMARK SUITE. THE FAILURE OF MPL6 IN BIGBLUE4X2 DOES NOT APPEAR TO BE CAUSED BY

OUT-OF-MEMORY CONDITIONS.

level 2 (SSE2) [23] (through g++ intrinsics) that per-

form several floating-point operations at once. SSE2

instructions are extensively used in our CG solver.

Since SSE2 instructions are available in most modern

CPUs, we used them in the default mode evaluated

in Table I and Table II. The overall speed-up due to

parallelism varies between different hardware systems,

as it depends on the relation between CPU speed and

memory bandwidth.

/ / i n n e r p r oduc t o f two f l o a t v e c t o r s x and y

f l o a t i n n e r p r o d u c t (v e c t o r<f l o a t>&x , ve c t o r<f l o a t>&y)

{
f l o a t p acc [4] , i n n e r p r o d u c t =(f l o a t) 0 . ;

m128 X, Y, acc = mm set zero ps () ;

unsigned i ;

pragma omp p a r a l l e l f o r s c h edu l e (s t a t i c)

pr i va t e (X,Y) l a s t p r i v a t e (i) r e d u c t i o n (+ : acc)

num threads (NUM CORES)

f o r (i =0 ; i<=x . s i z e ()−4 ; i +=4)

{
X = mm load ps(&x [i]) ;

Y = mm load ps(&y [i]) ;

a cc = mm add ps (acc , mm mul ps (X, Y)) ;

}
mm store ps (p acc , acc) ;

i n n e r p r o d u c t = p acc [0]+ p acc [1]+ p acc [2]+ p acc [3] ;

f o r (; i<x . s i z e () ; i ++)

i n n e r p r o d u c t +=x [i]∗ y [i] ;
re turn i n n e r p r o d u c t ;

}

Listing 1. Sample code for OpenMP and SSE2 parallelization for

the inner-product operation.

After we parallelized the main bottlenecks, we no-

ticed that look-ahead legalization started consuming a

significant fraction of overall runtime. Fortunately, top-

down geometric partitioning and non-linear scaling are

amenable to parallelization as well. Notably, top-down

partitioning generates an increasing number of sub-

tasks of similar sizes which can be solved in parallel.

Let Q be the global queue of bin clusters, as defined

in Algorithm 1, and each thread has a private queue

of bin clusters Qi. First, we statically assign initial

bin clusters to available threads such that each thread

has similar number of bin clusters to start. After each

level of top-down geometric partitioning and non-linear

scaling on such bin cluster, each thread generates two

sub-clusters with similar numbers of cells. Then the

thread ti adds only one of two sub-clusters to its

own cluster queue Qi for the next level of top-down

geometric partitioning and non-linear scaling, while

the remainder is added to the global cluster queue Q.

Whenever Qi of a thread ti becomes empty, the thread

ti dynamically retrieves clusters from the global cluster

queue Q. The number of clusters to be retrieved N is

given by

N = max(Q.size()/Nthreads, 1)

where Nthreads is the total number of threads.

B. Empirical Studies

As part of our empirical validation, we ran SimPL

on an 8-core AMD-based system with four dual-core

CPUs and 16GByte RAM. Each CPU was Opteron

880 processor running at 2.4GHz with 1024KB cache.

Single-thread execution was compared to eight-thread

execution as shown in Table III. Our combination of

multi-threading and SIMD instruction-level paralleliza-

tion was 1.6 times faster on average than parallelization

based on multi-threading alone. Theoretically, using

SIMD instruction-level parallelization may speed-up

CG by at most four times. However, SIMD-based im-

plementation of SpMxV only provided marginal speed-

ups and was not worth the development effort. This is

because irregular memory access patterns of SpMxV

prohibit the aligned loading of values (MOVAPS or

mm load ps in Listing 1) to SSE registers. Never-

theless, SSE instructions were helpful in other parts

of the code and contributed to the overall speed-up in

global placement, as illustrated in Table IV.

We note that look-ahead legalization operates on

large datasets, but performs little computation per

datum, which limits its performance by memory band-

width. The amount of work per thread is so small

that the overhead of thread creation outweighed the

benefits. As a result, this part of SimPL scales poorly

to >4 threads on available hardware, although this is

probably not a fundamental limitation of the algorithm.

The overall speed-ups in global placement runtimes

are shown in Table IV. Solution quality did not appre-

ciably change, but peak memory usage increased by

1.91 times whereas runtime of global placement itera-

tions was reduced by 2.4 times on average. The speed-

ups saturate for more than 4 threads as look-ahead

11

Ckts 1 CORE 2 THREADS 4 THREADS 8 THREADS

CG+SSE CG CG+SSE B2B T&N CG CG+SSE B2B T&N CG CG+SSE B2B T&N

AD1 1.37 1.88 2.21 1.45 1.41 2.03 2.87 1.64 1.59 1.92 3.28 1.91 1.48

AD2 1.61 1.77 2.09 1.50 1.53 2.12 3.01 2.04 2.17 2.06 3.22 1.98 1.40

AD3 1.57 1.76 2.20 1.48 1.62 1.88 3.17 1.62 2.25 2.00 3.55 1.79 1.66

AD4 1.50 1.65 2.07 1.51 1.56 1.81 3.03 1.58 2.17 1.77 3.33 1.72 1.36

BB1 1.57 2.03 2.11 1.27 1.71 2.02 3.14 1.66 2.93 2.05 3.70 1.78 2.93

BB2 1.62 2.07 2.24 1.48 1.49 1.72 2.97 1.68 1.89 1.79 3.50 1.74 1.58

BB3 1.54 1.53 2.25 1.60 1.32 1.68 3.04 1.64 2.04 1.81 3.30 1.85 1.32

BB4 2.01 2.63 3.04 2.01 1.59 2.71 4.48 2.02 2.12 2.76 5.12 2.18 1.68

GM 1.59× 1.89× 2.26× 1.53× 1.52× 1.98× 3.18× 1.73× 2.12× 2.00× 3.59× 1.86× 1.62×

TABLE III
SPEED-UP RATIOS FOR CONJUGATE GRADIENT (CG), B2B NET MODEL CONSTRUCTION (B2B), AND TOP-DOWN GEOMETRIC

PARTITIONING AND NON-LINEAR SCALING (T&N) ON THE ISPD 2005 BENCHMARK SUITE. RUNTIMES ARE COMPARED TO

SINGLE-THREADED EXECUTION WITHOUT SUPPORT OF SSE INSTRUCTIONS.

Ckts 2 THREADS 4 THREADS 8 THREADS

no SSE SSE no SSE SSE no SSE SSE

AD1 1.70 1.71 1.76 2.03 1.71 2.23

AD2 1.75 1.73 1.91 2.43 1.90 2.35

AD3 1.59 1.72 1.79 2.30 1.81 2.40

AD4 1.55 1.65 1.75 2.24 1.67 2.26

BB1 1.75 1.67 2.17 2.56 2.18 2.67

BB2 1.70 1.72 1.67 2.22 1.66 2.37

BB3 1.49 1.75 1.71 2.28 1.65 2.28

BB4 1.94 2.12 2.01 2.55 2.03 2.69

GM 1.68× 1.75× 1.84× 2.32× 1.82× 2.40×

TABLE IV
SPEED-UP RATIOS FOR GLOBAL PLACEMENT ON THE ISPD 2005

BENCHMARK SUITE. RUNTIMES ARE COMPARED TO

SINGLE-THREADED EXECUTION WITHOUT SUPPORT OF SSE
INSTRUCTIONS.

legalization scales poorly. The initial placement stage

was accelerated by about 3 times. While CG remained

the runtime bottle neck of SimPL on 8 threads (36%
of global placement), look-ahead legalization became

a close second (> 31% of global placement).

VIII. CONCLUSIONS AND FUTURE WORK

In this work, we developed a new, flat, partition-

based and force-directed quadratic global placer. Un-

like other state-of-the-art placers, it is rather simple,

and our self-contained implementation includes fewer

than 5,000 lines of C++ code. The algorithm is iterative

and maintains two placements — one computes a lower

bound and one computes an upper bound on final wire-

length. These two placements interact, ensuring stabil-

ity and fast convergence of the algorithm. The upper-

bound placement is produced by a new look-ahead

legalization algorithm, based on top-down geometric

partitioning and non-linear scaling, and converges to

final cell locations. In contrast, all analytic algorithms

we reviewed (both force-directed quadratic and non-

convex) derive their final solution from a lower-bound

placement.

The use of partition-based techniques in upper-

bound placements offers a solution to the force-

modulation problem [18], [30] and removes the need

for the so-called hold forces used by several force-

directed placers.10 As discussed in Section III, upper-

bound placements perform an area look-ahead11 that

is instrumental in the handling of layout obsta-

cles. APlace2, NTUPlace3, mPL6, as well as some

force-directed placers, model obstacles by additional

smoothened penalty terms in the objective function.

Not only such terms introduce extra work, but they

also add imprecisions to modeling. For similar reasons,

SimPL avoids netlist clustering used by other placers.

We have implemented several other techniques essen-

tial to well-known placers, such as BoxPlace [18], ILR

[29], and ad hoc force modulation [30], but they did

not improve SimPL results.

SimPL is highly competitive on ISPD 2005 bench-

marks where it outperforms every placer available to us

in binary both by solution quality and runtime. SimPL’s

advantage in runtime and solution quality over Fast-

Place3 and mPL6 grows on larger netlists. However,

its most compelling advantages over prior state of the

art deal with practical uses of placement in modern

timing-closure design flows: (1) the reduced complex-

ity of SimPL allows for fast implementation, parallel

processing, and effective software maintenance; (2) the

upper-bound placements facilitate tighter integration of

timing and congestion optimizations into the global

placement process, improving the speed and quality

of physical synthesis.

The SimPL algorithm saw rapid adoption since its

first publication at ICCAD 2010. At the ISPD 2011

placement contest, the winning team successfully im-

plemented SimPL without having access to our source

code. To our knowledge, at least two major EDA

vendors are now using similar placement algorithms,

and our own work with a state-of-the-art industry

placer quickly produced significant improvements that

will be discussed in future publications.

10Hold forces are used to ensure that the current placement
is a force equillibrium. Then move forces are added so that the
placement can be improved. While this techniques is needed to
ensure convergence of iterations, SimPL relies on anchors and
pseudonets to ensure convergence.

11The concept of area look-ahead was proposed in [9] for block-
packing by nested bisection, where it checks if a given bisection
admits a legal block packing in each partition. Area look-ahead was
not used in [9] to spread standard cells from dense regions.

12

The implementation of SimPL described in this

paper is designed for standard-cell layouts and does not

yet handle movable macro-blocks. Our recent industry

experience suggests that the majority of modern large-

scale placement instances in practice do not require

this feature, as their macro-blocks are fixed. However,

mixed-size placement is useful for some mixed-signal

SoCs, and we are addressing it in our ongoing work.12

Attempting to explain theoretically the strong per-

formance of our placement algorithm, we have no-

ticed similarities to primal-dual algorithms for convex

[31] and combinatorial [5] optimization. Primal-dual

methods maintain lower and upper bounds, expressed

by primal and dual solutions that eventually converge

to an optimal feasible solution. The interpretation of

duality as swapping the problem’s constraints for the

objective function [31] is also consistent with our

algorithm — look-ahead legalization corresponds to

imposing a no-overlap constraint while relaxing the

linear constraints that capture the global minimum

of the quadratic wirelength objective. The key to the

success of primal-dual algorithms [5], [31] is the

observation that alternating progress in primal and dual

solutions, i.e., improving the cost of feasible solutions

and tightening the constraints for low-cost solutions,

typically leads to faster convergence compared to one-

sided optimizations. This effect is empirically observed

in Section VI where SimPL is compared to pre-existing

placement algorithms, all of which are one-sided.

REFERENCES

[1] S. N. Adya, I. L. Markov, “Executable Placement Util-
ities,” http://vlsicad.eecs.umich.edu/BK/PlaceUtils/

[2] C. J. Alpert, G.-J. Nam. P. G. Villarrubia, “Effective
Free Space Management for Cut-based Placement via
Analytical Constraint Generation,” IEEE TCAD 22(10)
2003, pp. 1343-1353.

[3] C. J. Alpert et al., “Techniques for Fast Physical Syn-
thesis,” Proc. IEEE 95(3), 2007, pp. 573-599.

[4] U. Brenner, M. Struzyna, J. Vygen, “BonnPlace: Place-
ment of Leading-Edge Chips by Advanced Combinato-
rial Algorithms,” IEEE TCAD 27(9) 2008, pp.1607-20.

[5] N. Buchbinder, J. Naor, The Design of Competitive
Online Algorithms via a Primal-Dual Approach, NOW
Publishers, 2009.

[6] A. E. Caldwell, A. B. Kahng, I. L. Markov, “Can Re-
cursive Bisection Alone Produce Routable Placements?”
DAC 2000.

[7] T. F. Chan et al., “mPL6: Enhanced Multilevel Mixed-
Size Placement,” ISPD 2006, pp. 212-214.

[8] T.-C. Chen et al.,“NTUPlace3: An Analytical Placer
for Large-Scale Mixed-Size Designs With Preplaced
Blocks and Density Constraints,” IEEE TCAD 27(7)
2008, pp.1228-1240.

[9] J. Cong, M. Romesis, J. R. Shinnerl, “Fast Floorplan-
ning by Look-ahead Enabled Recursive Bipartitioning,”
TCAD 25(9), 2006, pp. 1719-1732.

12Academic placers typically introduce this feature in dedicated
publications, rather than in the first publication describing the
baseline algorithm.

[10] G. Goumas et al., “Understanding the Performance of
Sparse Matrix-Vector Multiplication,” Euromicro Int’l
Conf. on PDP 2008, pp. 283-292.

[11] L. Dagum, R. Menon, “OpenMP: An Industry Standard
API for Shared-memory Programming,” IEEE Compu-

tational Science and Enginnering, 1998, pp. 46-55.
[12] M. Garland, “Sparse Matrix Computations on Many-

core GPU’s,” Proc. DAC 2010, pp. 2-6.
[13] L. Hsu et al., “Exploring the Cache Design Space

for Large Scale CMPs,” ACM SIGARCH Computer
Architecture News 2005, pp. 24-33.

[14] B. Hu, M. Marek-Sadowska, “FAR: Fixed-points Ad-
dition & Relaxation Based Placement,” ISPD 2005, pp.
161-166.

[15] D. A. Jamsek, “Designing and Optimizing Compute
Kernels on NVIDIA GPUs,” Proc. ASPDAC 2009, pp
224-229.

[16] A. B. Kahng, Q. Wang, “A Faster Implementation of
APlace,” ISPD 2006, pp. 218-220.

[17] A. B. Kahng, J. Lienig, I. L. Markov, J. Hu, “VLSI
Physical Design: from Graph Partitioning to Timing
Closure,” Springer 2011, 312 pages.

[18] A. A. Kennings, K. Vorwerk, “Force-Directed Methods
for Generic Placement,” IEEE TCAD 25(10), 2006, pp.
2076-2087.

[19] K. Madduri et al., “Parallel Shortest Path Algorithms
for Solving Large-Scale Instances”, The Shortest Path
Problem: Ninth DIMACS Implementation Challenge,
pp. 249-290, DIMACS, 2009.

[20] G.-J. Nam et al., “A Fast Hierarchical Quadratic Place-
ment Algorithm,” IEEE TCAD 25(4), 2006, pp.678-691.

[21] G.-J. Nam, J. Cong, “Modern Circuit Placement: Best
Practices and Results,” Springer, 2007.

[22] M. Pan, N. Viswanathan, C. Chu, “An Efficient &
Effective Detailed Placement Algorithm,” ICCAD 2005,
pp. 48-55.

[23] S. K. Raman, V. Pentkovski, J. Keshava, “Implementing
Streaming SIMD Extensions on the Pentium III Proces-
sor” IEEE Micro 20(4) 2000, pp. 47-57.

[24] J. A. Roy, I. L. Markov, “ECO-System: Embracing
the Change in Placement,” IEEE TCAD 26(12) 2007,
pp. 2173-2185.

[25] J. A. Roy et al., “Capo: Robust and Scalable Open-
source Min-cut Floorplacer,” ISPD 2005, pp. 224-226.

[26] Y. Saad, “Iterative Methods for Sparse Linear Systems,”
SIAM 2003.

[27] P. Spindler, U. Schlichtmann, F. M. Johannes,
“Kraftwerk2 - A Fast Force-Directed Quadratic Place-
ment Approach Using an Accurate Net Model,” IEEE
TCAD 27(8) 2008, pp. 1398-1411.

[28] L. N. Trefethen, D. Bau “Numerical Linear Algebra,”
SIAM 1997, pp. 296-298.

[29] N. Viswanathan, M. Pan, C. Chu, “FastPlace 3.0: A
Fast Multilevel Quadratic Placement Algorithm with
Placement Congestion Control,” ASPDAC 2007, pp.
135-140.

[30] N. Viswanathan et al., “RQL: Global Placement via
Relaxed Quadratic Spreading and Linearization,” DAC
2007, pp. 453-458.

[31] S. J. Wright, “Primal-Dual Interior-Point Methods,”
SIAM 1987, 309 pages.

13

Myung-Chul Kim received the B.S. de-
gree in Electronic and Electrical Engineer-
ing from the Pohang University of Sci-
ence and Technology (POSTECH), South
Korea, in 2006 and the M.S. in Electrical
Engineering at the University of Michigan,
in 2009. Currently he is a Ph.D. candidate
at the University of Michigan. His research
interests include VLSI Physical Design
Automation with emphasis on placement,
routing and timing analysis. Myung-Chul

Kim is the winner of the ISPD 2010 clock-network synthesis contest
and the recipient of the IEEE/ACM William J. McCalla Best Paper
Award at ICCAD 2010. In 2011, he worked as a research intern at
IBM Research.

Dong-Jin Lee was born in Gwangju, South
Korea. He received the B.S. degree in
electrical engineering from Seoul National
University, South Korea, in 2006 and the
M.S. and Ph.D. degrees in Electrical En-
gineering from University of Michigan,
Ann Arbor, in 2008 and 2011 respectively.
His research interests include EDA clock
network synthesis, placement and routing
algorithms. He is the winner of the ISPD
2009 and 2010 clock-newtwork synthesis

contests and the recipient of the IEEE/ACM William J. McCalla
Best Paper Award at ICCAD 2010. In 2009 and 2010, he worked as
a research intern at Texas Instruments.

Igor L. Markov is an associate professor
of Electrical Engineering and Computer
Science at the University of Michigan. He
received his Ph.D. in Computer Science
from UCLA. He is a member of the Ex-
ecutive Board of ACM SIGDA, Editorial
Board member of the Communications of
ACM and IEEE Design & Test, as well
as several ACM and IEEE Transactions.
He chaired tracks at DAC, ICCAD, ICCD,
DATE and GLSVLSI. Prof. Markov re-

searches computers that make computers. He has co-authored three
books and more than 180 refereed publications, some of which were
honored by the best-paper awards at the Design Automation and
Test in Europe Conference (DATE), the Int’l Symposium on Physical
Design (ISPD) and IEEE Trans. on Computer-Aided Design. During
the 2011 redesign of the ACM Computing Classification System,
Prof. Markov lead the effort on the Hardware tree. Prof. Markov is
the recipient of a DAC Fellowship, an ACM SIGDA Outstanding
New Faculty award, an NSF CAREER award, an IBM Partnership
Award, a Microsoft A. Richard Newton Breakthrough Research
Award, and the inaugural IEEE CEDA Early Career Award.

